Tackling Multidrug-Resistant Salmonella: Innovations for Food Safety and Sustainability
Keywords:
Salmonella, Foodborne Pathogens, Multidrug Resistance, Food Safety, Sustainable Food Systems, Phytochemicals, Nanoparticles, Biofilm Control, Genomic Surveillance, One HealthAbstract
Salmonella, a major foodborne pathogen, causes 93.8 million gastroenteritis cases annually. This review examines global outbreaks (e.g. 2021 Peaches outbreak and the 2022 Ferrero's) serotype epidemiology (Salmonella typhimurium, Salmonella enteritidis), and survival factors (pH, water activity). Novel prevention methods, including phytochemicals and nanoparticles, offer sustainable alternatives to combat multidrug resistance. Recent advances in preventative approaches, such as phytochemical treatments and essential oils that mitigate antibiotic resistance, present novel opportunities for combating multidrug-resistant bacteria. A multimodal strategy incorporating severe food safety regulations, technological developments and global collaboration is required to efficiently navigate complex environment of Salmonella and restrict its impact on global food safety and public health. This review explores epidemiology, outbreaks, and novel prevention methods like phytochemicals and nanoparticles, proposing data-driven and biotechnological solutions for sustainable food systems.
Downloads
References
1. Whiteworth J. Food Safety News. 2023.
2. Who. Whiteworth, J. (2023). WHO. 2024.
3. World Organisation for Animal H. Chapter 3.09.08: Salmonellosis. OIE Terrestrial Manual. 2018;1, 2 and 3(8th Edition):1735 - 52.
4. Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. Global burden of invasive nontyphoidal salmonella disease, 2010. Emerging Infectious Diseases. 2015;21(6):941-9.
5. Gordon MA, Feasey NA, Nyirenda TS, Graham SM. Nontyphoid Salmonella Disease. Tenth Edit ed: Elsevier Inc.; 2020 2020. 500-6 p.
6. Ferrari RG, Rosario DKA, Cunha-Neto A, Mano SB, Figueiredo EES, Conte-Juniora CA. Worldwide epidemiology of Salmonella serovars in animal-based foods: A meta-analysis. Applied and Environmental Microbiology. 2019;85(14).
7. Teklemariam AD, Al-Hindi RR, Albiheyri RS, Alharbi MG, Alghamdi MA, Filimban AAR, et al. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Fo od Safety Continuum. Foods. 2023;12(9).
8. Ochiai RL, Wang X, Seidlein L, Yang J, Bhutta ZA, Bhattacharya SK, et al. Salmonella paratyphi A rates, Asia. Emerging Infectious Diseases. 2005;11(11):1764-6.
9. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, et al. The global burden of nontyphoidal salmonella gastroenteritis. Clinical Infectious Diseases. 2010;50(6):882-9.
10. Antillón M, Warren JL, Crawford FW, Weinberger DM, Kürüm E, Pak GD, et al. The burden of typhoid fever in low- and middle-income countries: A met a-regression approach. PLoS Neglected Tropical Diseases. 2017;11(2):1-21.
11. Efsa. The European Union One Health 2022 Zoonoses Report. EFSA Journal. 2023;21(12).
12. Sateriale D, Forgione G, Cristofaro GA, Pagliuca C, Colicchio R, Salvatore P, et al. Antibacterial and Antibiofilm Efficacy of Thyme (Thymus vulgaris L.) E ssential Oil against Foodborne Illness Pathogens, Salmonella enterica subsp. enterica Serovar Typhimurium and Bacillus cereus. Antibiotics. 2023;12(3).
13. Patadia AK. Bacterial Diversity of Selected Genuses: Class notes. BookRix. 2020.
14. Elhenawy W, Bording-Jorgensen M, Valguarnera E, Haurat MF, Wine E, Feldman MF. LPS remodeling triggers formation of outer membrane vesicles in salmon ella. mBio. 2016;7(4).
15. Herrero-Fresno A, Olsen JE. Salmonella Typhimurium metabolism affects virulence in the host – A mi ni-review. Food Microbiology. 2018;71:98-110.
16. Jajere SM. A review of Salmonella enterica with particular focus on the pathogeni city and virulence factors, host specificity and adaptation and antimi crobial resistance including multidrug resistance. Veterinary World. 2019;12(4):504-21.
17. Gast RK, Dittoe DK, Ricke SC. Salmonella in eggs and egg-laying chickens: pathways to effective cont rol. Critical Reviews in Microbiology. 2024;50(1):39-63.
18. Howard ZR, O'Bryan CA, Crandall PG, Ricke SC. Salmonella Enteritidis in shell eggs: Current issues and prospects for control. Food Research International. 2012;45(2):755-64.
19. McKelvey JA, Yang M, Jiang Y, Zhang S. Salmonella enterica serovar enteritidis antimicrobial peptide resistan ce genes aid in defense against chicken innate immunity, fecal sheddin g, and egg deposition. Infection and Immunity. 2014;82(12):5185-202.
20. Dominguez JE, Viñas MR, Herrera M, Moroni M, Gutkind GO, Mercado EC, et al. Molecular characterization and antimicrobial resistance profiles of Sa lmonella Heidelberg isolates from poultry. Zoonoses and Public Health. 2021;68(4):309-15.
21. Melo RT, Galvão NN, Guidotti-Takeuchi M, Peres PABM, Fonseca BB, Profeta R, et al. Molecular Characterization and Survive Abilities of Salmonella Heidelb erg Strains of Poultry Origin in Brazil. Frontiers in Microbiology. 2021;12(June).
22. Sasaki Y, Kakizawa H, Baba Y, Ito T, Haremaki Y, Yonemichi M, et al. Antimicrobial resistance in salmonella isolated from food workers and chicken products in japan. Antibiotics. 2021;10(12):1-12.
23. Sielski Galvão Soares L, Casella T, Kawagoe EK, Benetti Filho V, Omori WP, Nogueira MCL, et al. Phenotypic and genotypic characterization of antibiotic resistance of Salmonella Heidelberg in the south of Brazil. International Journal of Food Microbiology. 2023;391-393(February).
24. Cardoso EM, Dea Lindner J, Ferreira FA. Genomic analysis of Salmonella Heidelberg isolated from the Brazilian poultry farms. Brazilian Journal of Microbiology. 2024:4129-37.
25. Crim SM, Chai SJ, Karp BE, Judd MC, Reynolds J, Swanson KC, et al. Salmonella enterica Serotype Newport Infections in the United States, 2004-2013: Increased Incidence Investigated Through Four Surveillance Systems. Foodborne Pathogens and Disease. 2018;15(10):612-20.
26. Li B, Jackson SA, Gangiredla J, Wang W, Liu H, Tall BD, et al. Genomic evidence reveals numerous Salmonella enterica serovar Newport reintroduction events in Suwannee watershed irrigation ponds. Applied and Environmental Microbiology. 2015;81(24):8243-53.
27. Paudyal N, Pan H, Wu B, Zhou X, Zhou X, Chai W, et al. Persistent Asymptomatic Human Infections by. 2020;5(3):1-8.
28. Jensen DA, Friedrich LM, Harris LJ, Danyluk MD, Schaffner DW. Quantifying transfer rates of Salmonella and Escherichia coli O157:H7 between fresh-cut produce and common kitchen surfaces. Journal of Food Protection. 2013;76(9):1530-8.
29. Rivera-Pérez W, Barquero-Calvo E, Zamora-Sanabria R. Salmonella contamination risk points in broiler carcasses during slaug hter line processing. Journal of Food Protection. 2014;77(12):2031-4.
30. Parker EM, Parker AJ, Short G, O'Connor AM, Wittum TE. Salmonella detection in commercially prepared livestock feed and the r aw ingredients and equipment used to manufacture the feed: A systemati c review and meta-analysis. Preventive Veterinary Medicine. 2022;198:105546.
31. Osivand Z, Rahimi E, Shakerian A, Khamesipour F. Prevalence, antibiotic resistance, virulence and antimicrobial resista nce gene profiles of Salmonella species recovered from retail beef and poultry processing environments. BMC Microbiology. 2025;25(1).
32. Miao S, Liu L, Fu Z. Prevalence of Salmonella in Chinese Food Commodities: A Meta-Analysis. Journal of Food Protection. 2022;85(5):859-70.
33. Fda. Investigation Report: Factors Potentially Contributing to the Contamin ation of Peaches Implicated in the Summer 2020 Outbreak of Salmonella Enteritidis. 2021.
34. Ecdc. Multi-country outbreak of monophasic Salmonella Typhimurium sequence t ype (ST) 34 linked to chocolate products. 2023.
35. Foodakai. Case study: The salmonella outbreak in chocolate products explained. 2020.
36. Fda. Investigation Report: Factors Potentially Contributing to the Contamin ation of Peaches Implicated in the Summer 2020 Outbreak of Salmonella Enteritidis. 2022.
37. Fatica MK, Schneider KR. Salmonella and produce: Survival in the plant environment and implicat ions in food safety. Virulence. 2011;2(6):573-9.
38. Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, et al. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovati ve Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics. 2024;13(1).
39. Carrasco E, Morales-Rueda A, García-Gimeno RM. Cross-contamination and recontamination by Salmonella in foods: A revi ew. Food Research International. 2012;45(2):545-56.
40. Asiva Noor R. No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. 2015:6.
41. Kieboom J, Kusumaningrum HD, Tempelaars MH, Hazeleger WC, Abee T, Beumer RR. Survival, elongation, and elevated tolerance of Salmonella enterica se rovar enteritidis at reduced water activity. Journal of Food Protection. 2006;69(11):2681-6.
42. Three SOF, Beef SON, During T, Commercial S, Storage F. Survival of Three Salmonella Serotypes on Beef. 2001;21:87-96.
43. Don S, Ammini P, Nayak BB, Kumar SH. rica in fish and shrimp atSurvival behaviour of Salmonella ente differ ent conditions of storage. Lwt. 2020;132(April):109795.
44. Jarvis NA, O'Bryan CA, Dawoud TM, Park SH, Kwon YM, Crandall PG, et al. An overview of Salmonella thermal destruction during food processing a nd preparation. Food Control. 2016;68:280-90.
45. Yao S, LiBrizzi BR, Chen H. Heating temperature and water activity of alfalfa seeds affect thermal inactivation of Salmonella and maintaining seed viability. International Journal of Food Microbiology. 2023;384(June 2022):109975.
46. Type I. Food Safety and Food Handling Practices. 2023.
47. Gruzdev N, Pinto R, Sela Saldinger S. Persistence of Salmonella enterica during dehydration and subsequent c old storage. Food Microbiology. 2012;32(2):415-22.
48. Andino A, Hanning I. Salmonella enterica: Survival, colonization, and virulence differences among serovars. Scientific World Journal. 2015;2015(Table 3).
49. Liu H, Whitehouse CA, Li B. Presence and Persistence of Salmonella in Water: The Impact on Microbi al Quality of Water and Food Safety. Frontiers in Public Health. 2018;6(May):1-13.
50. Jacobsen CS, Bech TB. Soil survival of Salmonella and transfer to freshwater and fresh produ ce. Food Research International. 2012;45(2):557-66.
51. Reta GG, Lopes SM, Martins de Aquino NS, Tondo EC. Quantification of Salmonella transfer in cross-contamination scenarios found in chicken slaughterhouses. Food Microbiology. 2023;116(February):104347.
52. Breidt F, Costilow RN. PROCESSING AND SAFETY. 2004.
53. Tapía MS, Alzamora SM, Chirife J. Effects of Water Activity (aw) on Microbial Stability as a Hurdle in F ood Preservation. Water Activity in Foods: Fundamentals and Applications. 2020:323-55.
54. Yarrakula S, Suraj ABS, Rehaman A, Saravanan S. Effect of hot air assisted radio frequency technology on physical and functional properties of pearl millet. The Pharma Innovation. 2022;11(March):633-7.
55. Silva MP, Farsoni EG, Gobato CF, Thomazini M, Favaro-Trindade CS. Simultaneous encapsulation of probiotic and guaraná peel extract for d evelopment of functional peanut butter. Food Control. 2022;138(April):109050.
56. Webber B, Oliveira AP, Pottker ES, Daroit L, Levandowski R, Santos LR, et al. Salmonella Enteritidis forms biofilm under low temperatures on differe nt food industry surfaces. Ciencia Rural. 2019;49(7).
57. Shatila F, Yaşa İ, Yalçın HT. Biofilm Formation by Salmonella enterica Strains. Current Microbiology. 2021;78(4):1150-8.
58. Pradhan J, Mallick S, Mishra N, Patel S, Pradhan J, Negi VD. Salmonella biofilm and its importance in the pathogenesis: Elsevier Inc.; 2022 2022. 447-59 p.
59. Harrell JE, Hahn MM, D’Souza SJ, Vasicek EM, Sandala JL, Gunn JS, et al. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within t he Intestine and Hepatobiliary Tract. Frontiers in Cellular and Infection Microbiology. 2021;10(February):1-17.
60. Mohamed MYI, Khalifa HO, Habib I. Food Pathways of Salmonella and Its Ability to Cause Gastroenteritis i n North Africa. Foods. 2025;14(2):1-26.
61. Galanis E, Fo Wong DMA, Patrick ME, Binsztein N, Cieslik A, Chalermchaikit T, et al. Web-based surveillance and global Salmonella distribution, 2000-2002. Emerging Infectious Diseases. 2006;12(3):381-8.
62. Efsa. one health. 2025.
63. Korkeala H, Koskela T, Jalava K. Salmonella Typhimurium outbreak caused by contaminated chocolate highl ights the importance of food hygiene and a socially responsible food c hain. Hygiene and Environmental Health Advances. 2024;10(April):100096.
64. Pires SM, Desta BN, Mughini-Gras L, Mmbaga BT, Fayemi OE, Salvador EM, et al. Burden of foodborne diseases: think global, act local. Current Opinion in Food Science. 2021;39(February):152-9.
65. Ecdc. Salmonellosis. 2024(February):1-11.
66. Ecdc E. The European Union summary report on antimicrobial resistance in zoono tic and indicator bacteria from humans, animals and food in 2021–2022. EFSA Journal. 2024;22(2).
67. Canning M, Birhane MG, Dewey-Mattia D, Lawinger H, Cote A, Gieraltowski L, et al. Salmonella Outbreaks Linked to Beef, United States, 2012–2019. Journal of Food Protection. 2023;86(5):100071.
68. Brinkwirth S, Dörre A, Stark K, Meinen A. The changing landscape of nontyphoidal salmonellosis: epidemiological patterns, imported cases and serovar distribution in Germany from 2012 to 2023. BMC Infectious Diseases. 2025;25(1).
69. Rounds JM, Taylor AJ, Eikmeier D, Nichols MM, Lappi V, Wirth SE, et al. Prospective Salmonella Enteritidis Surveillance and Outbreak Detection using Whole Genome Sequencing, Minnesota 2015-2017. Epidemiology and Infection. 2020(December 2017):1-8.
70. Ecdc Ea. Multi-country outbreak of Salmonella Typhimurium linked to chocolate p roducts. 2022.
71. Wei SH, Huang AS, Liao YS, Liu YL, Chiou CS. A large outbreak of salmonellosis associated with sandwiches contamina ted with multiple bacterial pathogens purchased via an online shopping service. Foodborne Pathogens and Disease. 2014;11(3):230-3.
72. Popa GL, Popa MI. Salmonella spp. Infection – a continuous threat worldwide. Germs. 2021;11(1):88-96.
73. Osasah V, Whitfield Y, Adams J, Danish A, Mather R, Aloosh M. An Outbreak of Salmonella Typhimurium Infections Linked to Ready-To-E at Tofu in Multiple Health Districts — Ontario, Canada, May–July 2021. MMWR Morbidity and Mortality Weekly Report. 2023;72(32):855-8.
74. Cdc. Salmonella surveillance overview. 2023.
75. Gazezova S, Nabirova D, Waltenburg M, Rakhimzhanova M, Smagul M, Kasabekova L, et al. Salmonellosis outbreak associated with the consumption of food at a we dding in an urban restaurant in Kazakhstan: a retrospective cohort stu dy. BMC Infectious Diseases. 2024;24(1).
76. Murrell L, Clough HE, Gibb R, Zhang X, Chattaway M, Buchan I, et al. Understanding the impacts of reductions in local government expenditur e on food safety services , England 2009 / 10 - 2019 / 20. 2025.
77. Usfda b. Outbreak Investigation of Salmonella: Mini Pastries (January 2025). 2025.
78. Noman Z, Anika TT, Sachi S, Ferdous J, Sarker YA, Sabur MA, et al. Evaluation of antibacterial efficacy of garlic (Allium sativum) and gi nger (Zingiber officinale) crude extract against multidrug-resistant ( MDR) poultry pathogen. Journal of Advanced Veterinary and Animal Research. 2023;10(2):151-6.
79. Lauteri C, Maggio F, Serio A, Festino AR, Paparella A, Vergara A. Overcoming Multidrug Resistance in Salmonella spp. Isolates Obtained F rom the Swine Food Chain by Using Essential Oils: An in vitro Study. Frontiers in Microbiology. 2022;12(February):1-11.
80. Ghaly MF, Nasr ZM, Abousaty AI, Seadawy HG, Shaheen MAA, Albogami S, et al. Alternative and Complementary Therapies against Foodborne Salmonella I nfections. Antibiotics. 2021;10(12):1-13.
81. Alibi S, Selma W, Mansour H, Navas J. Activity of Essential Oils Against Multidrug-Resistant Salmonella ente ritidis. Current Microbiology. 2022;79(9):1-10.
82. Parmanik A, Das S, Kar B, Bose A, Dwivedi GR, Pandey MM. Current Treatment Strategies Against Multidrug-Resistant Bacteria: A R eview. Current Microbiology. 2022;79(12):1-15.
83. Alharthi S, Alavi SE, Moyle PM, Ziora ZM. Sortase A (SrtA) inhibitors as an alternative treatment for superbug i nfections. Drug Discovery Today. 2021;26(9):2164-72.
84. Ebrahim AE, Abd El-Aziz NK, Elariny EYT, Shindia A, Osman A, Hozzein WN, et al. Antibacterial activity of bioactive compounds extracted from red kidne y bean (Phaseolus vulgaris L.) seeds against multidrug-resistant Enter obacterales. Frontiers in Microbiology. 2022;13(November).
85. Dias de Emery B, Zottis Chitolina G, Qadir MI, Quedi Furian T, Apellanis Borges K, Souza Moraes HL, et al. Antimicrobial and antibiofilm activity of silver nanoparticles against Salmonella Enteritidis. Brazilian Journal of Microbiology. 2023;54(1):285-92.
86. He Y, Capobianco J, Irwin P, Reed S, Lee J. Antimicrobial effect of zinc oxide nanoparticles on Campylobacter jeju ni and Salmonella enterica serovar Enteritidis. Journal of Food Safety. 2022;42(4):1-11.
Downloads
Published
Submitted
Revised
Accepted
Issue
Section
License
Copyright (c) 2025 M Chudasama, S. Dhananjay Kumar, N. Bharath, N. Seema Chanu, R. C. Pradhan (Author); P. Thivya

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.