The Role of Lactic Acid Bacteria in Bioplastic ProductionUsing Low-Cost Substrate

PHA production by LAB

Authors

    Alaleh Zoghi * Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran alalehzoghi@gmail.com
    Martin Koller Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, Graz, Austria;
https://doi.org/10.61882/BiotechIntellect.2.1.24

Keywords:

Food waste, , Agricultural waste, Fermentation, Polyhydroxyalkanoates, Polyl-actic acid, Biodegradable

Abstract

Plastic pollution poses a serious threat to the environment because it is nonbiodegradable. This issue has led many stakeholders to explore legal and technical solutions for creating valuable biodegradable plastics. Today, microorganisms have become promising sources for producing bioplastics, which have various uses, including packaging and other applications. Furthermore, the ongoing increase in food and agricultural waste, along with its management strategies, has attracted global attention due to its significant environmental impacts on air, soil, and water contamination. Lactic acid bacteria (LAB) are well-studied for producing two common bioplastics, polylactic acid (PLA) and polyhydroxyalkanoates (PHA), using food and agricultural waste. This review focuses on producing PHA and PLA from low-cost substrates with LAB. It highlights the types of PLA and PHA made by LAB and their applications. After briefly explaining what LAB strains can produce bioplastics, the biosynthesis of PLA and PHA by LAB is described. The review also explains the definitions and pretreatment methods of cheap substrates for bioplastic production. Finally, it discusses factors that influence the bioplastic production process. Overall, efficient methods for turning waste into bioplastics with LAB offer a promising step toward sustainable waste management and reducing the harm caused by traditional plastics. 

Downloads

Download data is not yet available.

References

1. Chen C, Chen X, Liu L, Wu J, Gao C. Engineering microorganisms to produce bio-based monomers: Progress and challenges. Fermentation. 2023; 9: 137.0h12t01tps://doi.org/10.3390/fermentation9020137

2. Mandal M, Roy A, Mitra D, Sarkar A. Possibilities and prospects of bioplastics production from agri-waste using bacterial communities: Finding a silver-lining in waste management. Curr Res Microb Sci. 2024; 7: 100274.

https://doi.org/10.1016/j.crmicr.2024.100274.

3. Curia S, Dautle S, Satterfield B, Yorke K, Cranley CE, Dobson BE, Stanzione JF. Betulin-based thermoplastics and thermosets through sustainable and industrially viable approaches: new insights for the valorization of an underutilized resource. ACS Sustain Chem Eng. 2019; 7(19): 16371-16381.

https://doi.org/10.1021/acssuschemeng.9b03471

4. Muneer F, Nadeem H, Arif A, Zaheer W. Bioplastics from biopolymers: an ecofriendly and sustainable solution of plastic pollution. Polym Sci Ser C. 2021; 63(1): 47-63.

https://doi.org/10.1134/S1811238221010057

5. Atiwesh G, Mikhael A, Parrish CC, Banoub J, Le TAT. Environmental impact of bioplastic use: a review. Heliyon. 2021; 7: 9.

https://doi.org/10.1016/j.heliyon.2021.e07918

6. Abang S, Wong F, Sarbatly R, Sariau J, Baini R, Awang B. Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications. J Bioresour Bioprod. 2023;

https://doi.org/10.1016/j.jobab.2023.06.005.

7. Das A, Ringu T, Ghosh S, Pramanik N. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym Bull. 2023; 80: 7247-7312. https://doi.org/10.1007/s00289-022-04443-4

8. Varghese S, Dhanraj ND, Rebello S, Sindhu R, Binod P, Pandey A, et al. Leads and hurdles to sustainable microbial bioplastic production. Chemosphere. 2022; 305: 135390.

https://doi.org/10.1016/j.chemosphere.2022.135390

9. Ali SS, Abdelkarim EA, Elsamahy T, Al-Tohamy R, Li F, Kornaros M, et al. Bioplastic production in terms of life cycle assessment: A state-of-the-art review. Environ Sci Ecotechnol. 2023; 13: 100254.

https://doi.org/10.1016/j.ese.2023.100254

10. Zupančič GD, Lončar A, Budžaki S, Panjičko M. Biopolymers produced by treating waste brewer’s yeast with active sludge bacteria: The qualitative analysis and evaluation of the potential for 3D printing. Sustainability. 2022; 14: 9365.

https://doi.org/10.3390/su14159365

11. Longo A, Fanelli F, Villano M, Montemurro M, Rizzello CG. Bioplastic production from agri-food waste through the use of Haloferax mediterranei: A comprehensive initial overview. Microorganisms. 2024; 12: 1038.

https://doi.org/10.3390/microorganisms12061038

12. Wang K, Chen C, Zhang R. Process development of Polyhydroxyalkanoates production by halophiles valorising food waste. Bioengin. 2022; 9(11): 630. https://doi.org/10.3390/bioengineering9110630

13. Dhagat S, Jujjavarapu SE. Recent Advances in Bioprocess Engineering and Bioreactor Design. Springer, New York, USA. 2024; pp. 287–298.

14. Visco A, Scolaro C, Facchin M, Brahimi S, Belhamdi H, Gatto V, Beghetto V. Agri-food wastes for bioplastics: European prospective on possible applications in their second life for a circular economy. Polymers. 2022; 14(13): 2752. https://doi.org/10.3390/polym14132752

15. Tsang YF, Kumar V, Samaddar P, Yang Y, Lee J, Ok YS, et al. Production of bioplastic through food waste valorization. Environ Int. 2019; 127: 625-644. https://doi.org/10.1016/j.envint.2019.03.076.

16. Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. Towards lactic acid bacteria-based biorefineries. Biotechnol Adv. 2014; 32: 1216-1236.

https://doi.org/10.1016/j.biotechadv.2014.07.005

17. Bhuwal AK, Singh G, Aggarwal NK, Goyal V, Yadav A. Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int J Biomater. 2013; 2013: 752821.

https://doi.org/10.1155/2013/752821

18. Abdullah M, Sugimoto S, Higashi C, Matsumoto S, Sonomoto K. Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli DnaK. Appl Environ Microbiol. 2010; 76: 4277-4285.

https://doi.org/10.1128/AEM.02878-09

19. Paswan M, Adhikary S, Salama HH, Rusu AV, Zuorro A, Dholakiya BZ, et al. Microbial synthesis of lactic acid from cotton stalk for polylactic acid production. Microorganisms. 2023; 11: 1931.

https://doi.org/10.3390/microorganisms11081931.

20. Saranya C, Saravanakumari V, Afreen S. Lactic acid fermentation and production of polylactic acid from domestic wastes using Lactobacillus Delbruekii Subsp. Lactis. Bull Environ Pharmacol Life Sci. 2022; Spl Issue [5]: 729-733.

21. Rajendran N, Han J. Integrated polylactic acid and biodiesel production from food waste: process synthesis and economics. Bioresour Technol. 2022; 343: 126119.

https://doi.org/10.1016/j.biortech.2021.126119

22. Rawoof SAA, Kumar PS, Devaraj K, Devaraj T, Subramanian S. Enhancement of lactic acid production from food waste through simultaneous saccharification and fermentation using selective microbial strains. Biomass Convers Biorefinery. 2022; 12: 5947-5958.

https://doi.org/10.1007/s13399-020-00998-2

23. Kwan TH, Hu Y, Lin CSK. Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly(lactic acid) production. J Clean Prod. 2018; 181: 72-87.

https://doi.org/10.1016/j.jclepro.2018.01.179

24. Hassan SED, Abdel-Rahman MA, Roushdy MM, Azab MS, Gaber MA. Effective biorefinery approach for lactic acid production based on co-fermentation of mixed organic wastes by Enterococcus durans BP130. Biocatal Agric Biotechnol. 2019; 20: 101203.

https://doi.org/10.1016/j.bcab.2019.101203

25. Chen H, Chen B, Su Z, Wang K, Wang B, Wang Y, et al. Efficient lactic acid production from cassava bagasse by mixed culture of Bacillus coagulans and Lactobacillus rhamnosus using stepwise pH controlled simultaneous saccharification and co-fermentation. Ind Crops Prod. 2020; 146: 112175.

https://doi.org/10.1016/j.indcrop.2020.112175

26. Mottaghi M, Bairamzadeh S, Pishvaee MS. A taxonomic review and analysis on biomass supply chain design and planning: New trends, methodologies and applications. Ind Crops Prod. 2022; 180: 114747.

https://doi.org/10.1016/j.indcrop.2022.114747

27. Bosco F, Cirrincione S, Carletto R, Marmo L, Chiesa F, Mazzoli, R, Pessione E. PHA production from Cheese Whey and “Scotta”: Comparison between a consortium and a pure culture of Leuconostoc mesenteroides. Microorganisms. 2021: 9: 2426.

https://doi.org/10.3390/microorganisms9122426

28. Monilola WS, Makinde OE. Production and characterization of polyhydroxyalkanoates from lactic acid bacteria isolated from dairy wastewater, fermented cow milk and ‘Ogi’. J Adv Microbiol. 2020; 20: 31-46.

https://doi.org/10.9734/JAMB/2020/v20i930279

29. Kumari SVG, Pakshirajan K, Pugazhenthi G. Recent advances and future prospects of cellulose, starch, chitosan, polylactic acid and polyhydroxyalkanoates for sustainable food packaging applications. Int J Biol Macromol. 2022; 221: 163-182.

https://doi.org/10.1016/j.ijbiomac.2022.08.203

30. Vijayendra SVN, Shamala TR. Film forming microbial biopolymers forcommercial applications—A review. Crit Rev Biotechnol. 2014; 34: 338-357.

https://doi.org/10.3109/07388551.2013.798254

31. Westlie AH, Quinn EC, Parker CR, Chen EYX. Synthetic biodegradable polyhydroxyalkanoates (PHAs): Recent advances and future challenges. Prog Polym Sci. 2022; 134: 101608.

https://doi.org/10.1016/j.progpolymsci.2022.101608

32. Kee SH, Ganeson K, Rashid NFM, Yatim AFM, Vigneswari S, Amirul AAA, Bhubalan K. A review on biorefining of palm oil and sugar cane agro- industrial residues by bacteria into commercially viable bioplastics and biosurfactants. Fuel. 2022; 321: 124039.

https://doi.org/10.1016/j.fuel.2022.124039

33. Mannina G, Presti D, Montiel-Jarillo G, Suárez-Ojeda ME. Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresour Technol. 2019; 282: 361-369.

https://doi.org/10.1016/j.biortech.2019.03.037

34. Zhao X, Ji K, Kurt K, Cornish K, Vodovotz Y. Optimal mechanical properties of biodegradable natural rubber-toughened PHBV bioplastics intended for food packaging applications. Food Packag Shelf Life. 2019; 21: 100348. https://doi.org/10.1016/j.fpsl.2019.100348

35. Ladhari S, Vu NN, Boisvert C, Saidi A, Nguyen-Tri P. Recent development of polyhydroxyalkanoates (PHA)-based materials for antibacterial applications: A review. ACS Appl Bio Mater. 2023; 6(2): 1398-1430.

https://doi.org/10.1021/acsabm.3c00078

36. Torabi H, McGreal H, Zarrin H, Behzadfar E. Effects of rheological properties on 3D printing of poly (lactic acid) (PLA) and poly (hydroxy alkenoate) (PHA) hybrid materials. ACS Appl Polym Mater. 2023; 5(6): 4034-4044. https://doi.org/10.1021/acsapm.3c00271

37. Ghasemlou M, Barrow C, Adhikari B. The future of bioplastics in food packaging: An industrial perspective. Food Packag Shelf Life. 2024; 43: 101279. https://doi.org/10.1016/j.fpsl.2024.101279.

38. Kim MS, Chang H, Zheng L, Yan Q, Pfleger BF, Klier J, et al. A review of biodegradable plastics: chemistry, applications, properties, and future research needs. Chem Rev. 2023; 123(16): 9915-9939.

https://doi.org/10.1021/acs.chemrev.2c00876

39. Jacob J, Linson N, Sam R, Maria H, Pothan L, Thomas S, et al. Poly(lactic acid)/nanocellulose biocomposites for sustainable food packaging. Cellulose. 2024; 31.

https://doi.org/10.1007/s10570-024-05975-w.

40. Asim Z, Shahzad MA, Ghodake G, Mahmoud K, Almomani F, Rasool K. Transforming agricultural food waste into bioplastics: Methods, potential, and technological advances. Adv Sustain Syst. 2025; 9.

https://doi.org/10.1002/adsu.202400864.

41. de Souza FM, Gupta RK. Bacteria for bioplastics: Progress, applications, and challenges. ACS Omega. 2024; 9(8): 8666-8686.

https://doi.org/10.1021/acsomega.3c07372.

42. Naser AZ, Deiab I, Darras BM. Poly (lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Adv. 2021; 11(28): 17151-17196.

https://doi.org/10.1039/D1RA02390J

43. Huang S, Xue Y, Yu B, Wang L, Zhou C, Ma Y. A review of the recent developments in the bioproduction of polylactic acid and its precursors optically pure lactic acids. Molecules. 2021; 26(21): 6446.

https://doi.org/10.3390/molecules26216446

44. Jem KJ, Tan B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv Indust Engin Polym Res. 2020; 3(2): 60-70.

https://doi.org/10.1016/j.aiepr.2020.01.002.J.

45. Li X, Fields FR, Ho M, Marshall-Hudson A, Gross R, Casser ME, et al. Safety assessment of Streptococcus salivarius DB-B5 as a probiotic candidate for oral health. Food Chem Toxicol. 2021; 153: 112277.

https://doi.org/10.1016/j.fct.2021.112277

46. Taib NAAB, Rahman MR, Huda D, Kuok KK, Hamdan S, Bakri MKB, et al. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym Bull. 2023; 80(2): 1179-1213. https://doi.org/10.1007/s00289-022-04160-y

47. US Food and Drug Administration (FDA). Available online: https://www.fda.gov/food/food-ingredients-packaging/generallyrecognized-safe-gras (accessed on 15 February 2023).

48. Perczak A, Goliñski P, Bryla M, Waoekiewicz A. The efficiency of lactic acid bacteria against pathogenic fungi and mycotoxins. Arch Indust Hyg Toxicol. 2018; 69: 32-45. https://doi.org/10.2478/aiht-2018-69-3051

49. Coelho MC, Malcata FX, Silva CCG. Lactic acid bacteria in raw-milk cheeses: From starter cultures to probiotic functions. Foods. 2022; 11: 2276.

https://doi.org/10.3390/foods11152276

50. Liu W, Pang H, Zhang H, Cai Y. Biodiversity of lactic acid bacteria. In: Lactic Acid Bacteria. Springer, Berlin/Heidelberg, Germany. 2014; pp. 103–203.

51. Nicolescu CM, Bumbac M, Buruleanu CL, Popescu EC, Stanescu SG, Georgescu AA, Toma SM. Biopolymers produced by lactic acid bacteria: Characterization and food application. Polymers. 2023; 15: 1539.

https://doi.org/10.3390/polym15061539

52. Zheng J, Wittouck S, Salvetti E, Franz C, Harris H, Mattarelli P, et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020; 70: 2782-2858.

https://doi.org/10.1099/ijsem.0.004107

53. Bustamante D, Tortajada M, Ramón D, Rojas A. Production of D-Lactic acid by the fermentation of orange peel waste hydrolysate by lactic acid bacteria. Fermentation. 2020; 6: 1.

https://doi.org/10.3390/fermentation6010001

54. Porto MC, Kuniyoshi TM, Azevedo PO, Vitolo M, Oliveira RP. Pediococcus spp.: an important genus of lactic acid bacteria and pediocin producers. Biotechnol Adv. 2017; 35(3): 361-374.

https://doi.org/10.1016/j.biote hadv.2017.03.004

55. Qiu Z, Fang C, Gao Q, Bao J. A short-chain dehydrogenase plays a key role in cellulosic D-lactic acid fermentability of Pediococcus acidilactici. Bioresour Technol. 2020; 297: 122473.

https://doi.org/10.1016/j.biortech.2019.122473

56. Bancalari E, Alinovi M, Bottari B, Caligiani A, Mucchetti G, Gatti M. Ability of a wild Weissella strain to modify viscosity of fermented milk. Front Microbiol. 2020; 10: 3086.

https://doi.org/10.3389/fmicb.2019.03086

57. Song AAL, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact. 2017; 16: 55.

https://doi.org/10.1186/s12934-017-0669-x

58. Vinderola G, Ritieni A. Role of probiotics against mycotoxins and their deleterious effects. J Food Res. 2015; 4(1): 10-21.

https://doi.org/10.5539/jfr.v4n1p10

59. Chawla M, Narwal S, Dhankar R, Kalshan S. Microbial production of bioplastics: An eco-friendly alternative. Ecol Environ Conserv. 2023; 29: 254-262.

https://doi.org/10.53550/EEC.2023.v29i03s.048.

60. Muhammadi S, Afzal M, Hameed S. Bacterial polyhydroxyalkanoates- eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev. 2015; 8(3–4): 56-77.

https://doi.org/10.1080/17518253.2015.1109715

61. Yadav B, Pandey A, Kumar LR, Tyagi RD. Bioconversion of waste (water)/residues to bioplastics- A circular bioeconomy approach. Bioresour Technol. 2020; 298: 122584. https://doi.org/10.1016/j.biortech.2019.122584.

62. Wade ME, Strickland MT, Osborne JP, Edwards CG. Role of Pediococcus in winemaking. Aust J Grape Wine Res. 2018; 25: 7-24.

https://doi.org/10.1111/ajgw.12366

63. Samadhiya K, Sangtani R, Nogueira R, Bala K. Insightful advancement and opportunities for microbial bioplastic production. Front Microbiol. 2022; 12: 674864.

https://doi.org/10.3389/fmicb.2021.674864

64. Khosravi-Darani K, Mokhtari ZB, Amai T, Tanaka K. Microbial production of poly (hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol. 2013; 97 (4): 1407-1424.

https://doi.org/10.1007/s00253-012-4649-0

65. Riedel S, Brigham C. The Potential of Polyhydroxyalkanoate production from food wastes. Appl Food Biotechnol. 2019; 6.

https://doi.org/10.22037/afb.v6i1.22542.

66. Thomas AP, Kasa VP, Dubey BK, Sen R, Sarmah AK. Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock. Sci Total Environ. 2023; 904: 167243.

https://doi.org/10.1016/j.scitotenv.2023.167243.M.

67. Chozhavendhan S, Usha P, Sowmiya G, Rohini G. A review on bioplastic production—A need to the society. Int J Pharm Sci Rev Res. 2020; 62: 27–32.

68. Papadopoulou E, González MC, Reif D, Ahmed A, Tsapekos P, Angelidaki I, Harasek M. Separation of lactic acid from fermented residual resources using membrane technology. J Environ Chem Engin. 2023; 11(5): 110881.

https://doi.org/10.1016/j.jece.2023.110881.

69. Riaz S, Fatima N, Rasheed A, Riaz M, Anwar F, Khatoon Y. Metabolic engineered biocatalyst: A solution for PLA based problems. Int J Biomater. 2018; 2018: 1963024.

https://doi.org/10.1155/2018/1963024

70. Li X, Gang L, Julian P, Xiaojie L. Missing food, missing data? A critical review of global food losses and food waste data. Environ Sci Technol. 2017; 51: 6618-6633. https://doi.org/10.1021/acs.est.7b00401

71. Vigneswari S, Kee SH, Bin H, Mohamad H, Ganeson K, Bhubalan K, et al. Turning agricultural waste streams into biodegradable plastic: A step forward into adopting sustainable carbon neutrality. J Environ Chem Engin. 2024; 12: 112135.

https://doi.org/10.1016/j.jece.2024.112135.

72. Nath PC, Sharma R, Debnath S, Sharma M, Inbaraj BS, Dikkala PK, Sridhar K. Recent trends in cellulose-based biodegradable polymers for smart food packaging industry. Int J Biol Macromol. 2023; 253(8): 127524.

https://doi.org/10.1016/j.ijbiomac.2023.127524

73. Yaashikaa PR, Kumar PS, Saravanan A, Varjani S, Ramamurthy R. Bioconversion of municipal solid waste into bio-based products: a review on valorisation and sustainable approach for circular bioeconomy. Sci Total Environ. 2020; 748: 141312.

https://doi.org/10.1016/j.scitotenv.2020.141312

74. Lade VG, Mahajan KP, Rukhane PV. 360-Degree Waste Management. Elsevier, Amsterdam, Netherlands. 2023; pp. 39–66.

75. Sun S, Sun S, Cao X, Sun R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol. 2016; 199: 49-58. https://doi.org/10.1016/j.biortech.2015.08.061.

76. Gallego-García M, Moreno AD, Manzanares P, Negro MJ, Duque A. Recent advances on physical technologies for the pretreatment of food waste and lignocellulosic residues. Bioresour Technol. 2023; 369: 128397.

https://doi.org/10.1016/j.biortech.2022.128397.

77. Nguyen VK, Chaudhary DK, Dahal RH, Trinh NH, Kim J, Chang SW, et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel. 2021; 285: 119105.

https://doi.org/10.1016/j.fuel.2020.119105

78. Hamid A, Zafar A, Latif S, Peng L, Wang Y, Liaqat I, et al. Enzymatic hydrolysis of low temperature alkali pretreated wheat straw using immobilized β-xylanase nanoparticles. RSC Adv. 2023, 13, 1434-1445. https://doi.org/10.1039/D2RA07231A

79. Chen J, Ma X, Liang M, Guo Z, Cai Y, Zhu C, et al. Physical–chemical–biological pretreatment for biomass degradation and industrial applications: A review. Waste. 2024; 2(4): 451-473.

https://doi.org/10.3390/waste2040024

80. Houfani AA, Anders N, Spiess AC, Baldrian P, Benallaoua S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars– a review. Biomass Bioenergy. 2020; 134: 105481. https://doi.org/10.1016/j.biombioe.2020.105481.

81. Mohanrasu K, Rao RGR, Dinesh GH, Zhang K, Prakash GS, Song DP, et al. Optimization of media components and culture conditions for polyhydroxyalkanoates production by Bacillus megaterium. Fuel. 2020; 271: 117522. https://doi.org/10.1016/j.fuel.2020.117522

82. Liu H, Qi Y, Zhou P, Ye C, Gao C, Chen X, Liu L. Microbial physiological engineering increases the efficiency of microbial cell factories. Crit Rev Biotechnol. 2021; 41(3): 339-354.

https://doi.org/10.1080/07388551.2020.1856770

83. Wen Q, Ji Y, Chen Z, Lee DJ. Use of sodium chloride to rapidly restore polyhydroxyalkanoates production from filamentous bulking without polyhydroxyalkanoates productivity impairment. Bioresour Technol. 2020; 313: 123663. https://doi.org/10.1016/j.biortech.2020.123663

PHA production by LABs

Downloads

Published

2025-03-01

Submitted

2025-01-14

Revised

2015-02-21

Accepted

2025-04-26

How to Cite

Zoghi, A., & Koller, M. (2025). The Role of Lactic Acid Bacteria in Bioplastic ProductionUsing Low-Cost Substrate: PHA production by LAB. BiotechIntellect, 2(1), e8 (1-8). https://doi.org/10.61882/BiotechIntellect.2.1.24