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ABSTRACT

The rapid growth of microbiological data, fueled by high-throughput sequencing,
automated imaging, and environmental sensors, has outpaced the capabilities of
traditional analytical methods. Artificial intelligence (AI), particularly machine
learning (ML) and deep learning (DL), has emerged as a powerful tool for
uncovering complex patterns in these vast, multidimensional datasets. This
review critically examines the integration of AI across key microbiological
domains, including microbial genomics, metagenomics, environmental
microbiology, clinical diagnostics, and industrial biotechnology. We highlight
how AI accelerates genome annotation, enables precise phenotypic profiling,
enhances pathogen detection, and optimizes bioprocesses. Key examples include
convolutional neural networks for microbial colony classification, transformer
models for antibiotic resistance prediction, and generative AI for synthetic
biology design. However, challenges such as data sparsity, limited model
interpretability, and inconsistent benchmarking in ecological and clinical
contexts persist. We explore emerging solutions, including explainable Al,
federated learning, and hybrid models combining mechanistic and data-driven
approaches, to enhance transparency, scalability, and ethical deployment. This
review, the first to synthesize Al applications across clinical, environmental, and
industrial microbiology while addressing ethical and infrastructural challenges,
aims to guide researchers, clinicians, and bioengineers in leveraging Al for
transformative microbiological advancements.

What is “already known”:

e  Artificial intelligence has demonstrated promise in addressing specific microbiological

challenges: Genome annotation and pathogen detection.

e Its applications remain fragmented across subfields and face persistent hurdles: Data
sparsity, model interpretability, and benchmarking inconsistencies.

e  No comprehensive framework existed to unify AI-driven advances across clinical,

environmental, and industrial microbiology.

Al transforming microbiology enables rapid genome annotation, accurate pathogen

detec—tion, and optimized bioprocess control.

e Cross-domain integration: Covers applications in genomics, clinical, environmental, and
industrial microbiology.

e  Addressing challenges: Highlights solutions like explainable AI, hybrid models, and
federated learning for better transparency and collaboration.

e  Future opportunities: Digital twins, AI-enhanced synthetic biology, and planetary-scale
microbial intelligence for global monitoring and innovation.

What this article adds: .



https://portal.issn.org/
https://portal.issn.org/resource/ISSN/3115-7920
https://orcid.org/0000-0003-2054-2774
https://orcid.org/0009-0008-9164-8107
https://orcid.org/0000-0002-9271-1760
http://creativecommons.org/licenses/by-nc/4.0

Zarrindokht Emami-Karvani, et al.

1. Introduction: Microbiology in the Age of

Artificial Intelligence

1.1. The Data Deluge in Microbiology

Microbiology has entered a data-intensive era.
Advances in sequencing technologies, high-throughput
culturing, and real-time biosensors have produced
large, diverse datasets. In 2021 alone, over 3.6 million
microbial genomes were deposited in public
repositories-a number that continues to grow
exponentially (NCBI Genome, 2023). As of 2024,
public repositories now contain over 5 million
microbial genomes [NCBI, 2024]. Simultaneously,
automated microscopy, environmental metagenomics,
and phenotypic profiling platforms have generated
complex image-based and spatiotemporal data at

unprecedented scales.

However, this explosion of data has surpassed the
analytical capabilities of traditional microbiological
tools. While classical methods remain essential, their
ability to scale is challenged by the rapid growth of
microbiological data. Classical methods-ranging from
culture-dependent techniques to linear statistical
models—are increasingly limited in managing the
volume, complexity, and dimensionality of modern
microbiological datasets.

1.2. Artificial Intelligence as a Transformative
Framework

Artificial intelligence (AI), especially machine
learning (ML) and deep learning (DL), brings a major
change. These models can identify nonlinear patterns,
uncover hidden structures, and produce predictive
insights from microbiological data without needing
Unlike

bioinformatics pipelines that depend on predefined

many human-created rules. traditional
heuristics, Al learns patterns directly from raw data.
Landmark examples include:

¢ AlphaFold for protein structure prediction [1].

¢ DeepARG for antimicrobial resistance (AMR) gene

classification [2].

BiotechIntelect, Vol. 2, No. 1 e10: 1-18 (2025)

e CNNs for automated microbial colony phenotyping
[3].

e ESM-3 (2024) for protein language modeling [4].
MicrobeFormer (2023) for metagenomic binning

[5].

1.3. Bridging Gaps in Traditional Microbiology

Traditional methods are still reductionist and have
low throughput. Culture-based diagnostics detect less
than 1% of environmental microbes [6]. Mapping
genotype to phenotype is often complicated by
nonlinear regulation and context-dependent gene
expression. Manual microscopy and taxonomic
annotation are labor-intensive and prone to bias.
Additionally, standard statistical tools like PCA,
clustering, and regression often fail to capture the
dynamic, hierarchical, and nonlinear features of
microbial communities, especially in multi-omics or
longitudinal studies. Despite advances in Al, culture-
based methods remain essential for functional
validation of Al-predicted phenotypes. Al offers a way

to model this complexity more comprehensively.
1.4. Why This Review?

While

microbiology, most are fragmented and limited to

many reviews have covered AI in
either clinical microbiology, microbial ecology, or
specific algorithmic areas. Recent reviews focus
narrowly (e.g., [7]; [8]), lacking cross-domain
synthesis. There is still a need for integrated
perspectives that:

e Compare Al tools across microbiological subfields

e Critically evaluate interpretability, performance, and
reproducibility

e Address

challenges

ethical, technical, and deployment

This review uniquely combines technical, ethical,

and deployment challenges across various

microbiology subfields. It demonstrates how multi-

omics data can be integrated using machine learning
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for a systems-based approach in microbiology, as
shown in Fig. 1. Genomic data (including whole-
genome sequencing and metagenomics), genotypic
data (sequencing-based), and phenotypic data
(imaging-based) are processed with both unsupervised
learning methods (such as generative models and
causal inference) and supervised learning methods
(like Random Forests, Convolutional Neural Networks,
and Long Short-Term Memory networks). These
integrated analyses enable microbial community
modeling and support applications such as real-time
control. Outcomes include improved process control,
discovery of new byproducts (e.g., antibiotics),
optimization modeling, and ecological forecasting of

pathogens. Examples include DeepARG for antibiotic
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discovery [2] and BioDeep for real-time bioreactor
control [9]. Key processes highlighted are bacterial
annotation, fermenter harvesting, and the discovery of
new antibiotics.

Figure 1 illustrates how multi-omics data (genomic,
genotypic, phenotypic) are integrated using hybrid Al
models that combine unsupervised (generative, causal
inference) and supervised learning (CNNs, LSTMs)
methods. The processed data supports microbial
community modeling and applications such as real-
time bioreactor control and bacterial annotation.
Major outcomes include the discovery of new
antibiotics (e.g., DeepARG-like systems), optimization
modeling, and ecological forecasting of pathogens

through predictive microbiology frameworks.
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Figure 1. Artificial intelligence in microbiology: a systems view.

2, Artificial Intelligence and Machine Learning

in Microbiological Research

2.1. Foundations: From Pattern Recognition to Biolog-

ical Insight

Artificial intelligence (AI) includes computational
systems that can learn, reason, and make decisions,
abilities usually linked to human thinking. Within AI,
machine learning (ML) uses algorithms that learn from
labeled or unlabeled data to get better at predictions
over time. Deep learning (DL), a part of ML, employs

multi-layered neural networks to find hierarchical
features and is especially useful in handling complex,
unstructured data like images, sequences, and time-
series [10]. In microbiology, CNNs are great at
recognizing spatial patterns (e.g., colony images),
while transformers capture long-range dependencies
in genomic sequences (e.g., promoter regions).

Microbiology, increasingly influenced by high-
dimensional data, has become an active area for Al
From genome annotation and phenotype prediction to

modeling microbial communities, Al systems facilitate
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analyses that are difficult to perform with traditional

statistical methods.

2.2. Taxonomy of Al Approaches in Microbiology

The landscape of Al approaches in microbiology can
be organized taxonomically by learning paradigm,
model architecture, and domain-specific utility. Table
1 systematically categorizes these methods into

supervised, unsupervised, and semi-/self-supervised

Table 1. Taxonomy of ATl Approaches in Microbiology
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learning frameworks, detailing representative model
(e.g., CNNs, their

microbiological applications, inherent strengths, and

classes autoencoders),
operational limitations. The table now includes specific
examples and microbiology-contextual limitations.
This structured comparison allows for informed
selection of AI techniques for specific microbial

research goals.

Microbiological

Learning Type Model Class Applications Strengths Limitations
Supervised Random Forest Microbiome classification, Robust to overfitting; Less effective on high-
P (RF) resistance gene prediction interpretable dimensional, sparse data
Support Vector AMR prediction, species G.OOd for . . Poor performance on imbalanced
. . - binary/multiclass tasks; :
Machines classification fast or noisy data
Convolutional Image-based phenotyping . Requires large labeled dat.asets
High accuracy on (e.g., >10,000 annotated images),
Neural Networks (colony shape, FISH >
: unstructured data which are scarce for rare
(CNNs) segmentation)
pathogens.
Recurrent Neural Fermentation modeling, Captures temporal Prone to instability; requires high-
Networks (LSTM) microbial growth prediction dynamics quality time-series
U . Autoencoders, Dlmensmr}a_l 1ty eduction, . No need for labels; - . R -
nsupervised . pattern mining in community Limited biological interpretability
Clustering profiles reveals latent structure
Semi-/Self- Transformers, Gene function prediction, Effect}ve with sparse Complex to train and validate
. Contrastive . . labels; uses unlabeled . .
supervised . protein annotation biologically
Learning data
Enzyme design, promoter . - .
Generative GANs, VAEs optimization, and synthetic Enables novel sequence Risk of unrealistic outputs without

biology

generation

biological priors

2.3. Open-Source Al Platforms in Microbiology

A critical evaluation of open-source platforms is
crucial for advancing AI-driven microbiome research.
Table 2 offers a comparative analysis of major tools,
outlining their core functionalities, AT methodologies,

and key operational limitations to assist in platform

selection. It now includes user base and integration
details. Most platforms operate in isolation and lack
support for seamless, end-to-end pipelines from raw
data intake to biological insight generation. Emerging
platforms like KBase (2023) combine genomics,

metabolomics, and ML to address fragmentation.

Table 2. Notable examples of open-source tools support AI-driven microbiological analysis

Integration

Tool/Platform  Functionality AI Methods User Base P Limitations
Capabilities
QIIME 2 [11] M1c1:qb10me community RF, Naive s0k+ None L1m1te‘d DL support; lacks spatial
profiling Bayes modeling
. Microbiome classification No real-time inference; lacks
DeepMicro [12] via DL CNN, DNN sk+ None interpretability tools
DeepARG [2] AMR gene prediction DNN 10k+ None Sélcll};f::used on ARGs; infrequent
MetaNN [13] Metagenomic binning ResNet 2k+ Partial High compute cost; performance
depends on ecosystem
KBase Multi-omics integration RF, D.L’ 10k+ Multi-omics Steep learning curve; limited real-
Hybrid time control
SciSpacy, Biomedical NLP, EHR Transformers Partial Limited microbial domain
BioBERT mining (NLP) 20k+ adaptation
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2.4. Methodological Gaps and Emerging Solutions

Current Al-driven methodologies in microbiology
face significant gaps that hinder their full potential.
Key limitations include the persistent trade-off
between model interpretability and predictive accuracy
[14], alongside challenges in data quality stemming
from scarcity, noise, and sampling biases. The
underutilization of unsupervised learning for
exploratory microbiome analysis remains notable,
while fragmented workflows impede multi-omics data
integration. Further complications arise from
inconsistent benchmarking practices and validation
frameworks across studies [15] [16]. This section
critically examines these methodological constraints
and highlights emerging solutions to advance the field.
Despite recent progress, critical limitations persist:

e Interpretability vs. Accuracy: High-performing DL
models (e.g., CNNs, LSTMs, Transformers) remain
opaque. Explainable AT (XAI) tools such as SHAP or
LIME are underutilized in microbiological research
[17].

e Data Quality and Bias: Models trained on curated

regions  often

datasets from industrialized

underperform in global or environmental
microbiomes [14, 15].

e Underuse of Unsupervised Learning: Microbial
ecology would benefit from unsupervised methods
capable of revealing emergent community structures
without labels [16].

e Fragmented Workflows: There is a lack of unified
platforms supporting longitudinal, spatial, and
multi-omics data integration.

e Benchmarking and Validation: Few tools undergo
standardized benchmarking outside of initiatives like

CAMI [18].
2.5. Toward Hybrid and Explainable Al in Microbiology

The integration of hybrid AI models offers a

transformative approach for microbiology by

combining mechanistic biological frameworks with
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data-driven algorithms to improve predictive accuracy
[19]. An example of a hybrid model is COMETS (2023),
which merges metabolic networks with machine
learning to predict spatial competition in biofilms [20].
Explainable AI (XAI) tools are becoming increasingly
important for tracing predictions back to biological
pathways, ensuring transparency in both clinical and
research applications. Federated and transfer learning
techniques allow for collaborative model training
across institutions while maintaining data privacy, a
critical need for sensitive microbiological datasets [21].
Causal discovery methods, based on causal AI
algorithms [22], are developing to explore complex
microbial interactions beyond simple correlation
insights. This section discusses how these combined
advances address key limitations in microbial AI
systems while emphasizing biological interpretability
and ethical safeguards.

e Hybrid Models: Integrating mechanistic biological
frameworks (e.g., metabolic models, gene regulatory
networks) with data-driven Al to boost both accuracy
and interpretability.

e Explainable  AI:

microbiological logic, allowing users to trace

Tailoring XAI tools to

predictions back to biological pathways or
hypotheses.

e Federated and Transfer Learning: Enabling
collaborative AI across datasets and institutions
without raw data sharing a key factor for privacy in
clinical applications [19].

o Causal Discovery: Leveraging causal Al algorithms to
move beyond correlation and toward mechanistic
understanding of microbial systems [21],[22].

These methods are crucial for advancing AI from
just an automation tool to a scientific discovery engine
in microbiology.

3. Applications of AI in Key Microbiological

Domains

3.1. Microbial Genomics and Metagenomics

Background and Motivation
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The rapid growth of microbial whole-genome
sequencing and metagenomic datasets, now reaching
petabyte scale, has created an urgent need for tools that
can provide fast, accurate, and scalable analysis.
Traditional sequence alignment and rule-based
annotation methods are becoming increasingly
insufficient, especially when dealing with incomplete
or highly diverse genomes from uncultivated taxa.
Al-Driven Advances
e Taxonomic Classification: Tools such as Kraken2

[23] and MetaNN [13] use deep learning
architectures to improve species-level classification
in complex metagenomic samples. MetaNN, in
particular, uses residual networks to surpass
traditional alignment-based methods. Al tools like
MetaNN reach 95% taxonomic accuracy versus 85%
for Kraken2 but need 10x more GPU hours [13, 23].

¢ Genome Binning: Variational autoencoders (e.g.,
VAMB) facilitate probabilistic clustering of contigs,
supporting high-accuracy recovery of metagenome-
assembled genomes (MAGS) [24].

e Functional Annotation: DeepARG [2] and
transformer-based models like ESM and ProtT5 [25]
are used to identify antimicrobial resistance (AMR)
genes and assign functions to proteins with minimal
labeled data. For AMR prediction, DeepARG reduces
false negatives by 40% compared to CARD [2].

Autoencoder-based
feature
induction/embedding
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¢ Protein Structure Prediction: AlphaFold2 [1]
represents a major leap in applying deep learning to
predict 3D protein structures and interactions
directly from sequence information, even for proteins
with no homologs in databases.

Challenges and Gaps

e Training Data Limitations: Rare or extremo-
philic taxa are underrepresented in existing datasets,
leading to high false-positive rates and poor model
generalization in non-model systems [26].

e Functional Validation: Predictions from DL
models often lack phenotypic or ecological validation,
limiting their interpretive power.

e Computational Demands: Many Al frameworks

(HPC)

infrastructure, restricting accessibility in resource-

require  high-performance computing
limited settings.

The schematic shows how deep neural networks can
automate genome annotation and structure-function
analysis in high-throughput microbiome research, as
depicted in Fig. 2. The input genomic data (e.g., DNA
sequences) are processed with an autoencoder to
produce latent feature embedding. These features are
then used for downstream prediction tasks such as: (1)
Identification of antimicrobial resistance genes and (2)

3D protein structure modeling related to microbial

function and pathogenicity.

IN([IRIRITP

DNA Sequence

output

! |
=] (3

Antimicrobial
Resistance (AMR)
Gene Prediction

3D Protein
Structure
Prediction

Figure 2. Schematic representation of the deep learning framework for microbial genomic analysis.
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3.2. Microbial Ecology and Environmental Microbiology
Background and Motivation
Microbial communities play key roles in ecosystem
processes such as nutrient cycling, pollutant
breakdown, and biogeochemical control. However,
traditional methods like fluorescence in situ
hybridization (FISH) and denaturing gradient gel
electrophoresis (DGGE) lack the resolution and
scalability needed to monitor microbial dynamics
across different spatial and temporal scales. The
complexity and diversity of environmental
microbiomes require computational tools that can
manage nonlinear, high-dimensional, and often
incomplete data.
Al-Driven Advances
e Community Composition Prediction: Machine
learning models such as random forests and gradient
boosting algorithms have effectively been used to
predict microbial community composition based on
environmental variables like pH, moisture, salinity,
and heavy metal content [27].
¢ Ecological State Detection:
learning methods, such as t-SNE, UMAP, and k-

means clustering, have uncovered previously

Unsupervised

unknown ecological states in aquatic and soil
microbiomes [28].

e Temporal Dynamics Modeling: Deep learning
models such as convolutional neural networks
(CNNs) and long short-term memory (LSTM)
networks can identify seasonal and disturbance-
driven shifts in microbial communities from
longitudinal environmental datasets [29].

e Microbial Interaction Networks: Graph neural
networks (GNNSs) are now used to model microbial

co-occurrence and trophic interaction networks,
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leading to a better understanding of microbial
consortia and their functional stability [30].

Challenges and Gaps

e Sparse and Irregular Time-Series: Environ-
mental data are often discontinuous or sparsely
sampled, limiting the performance and stability of
time-dependent models.

e Weak Ecological Interpretability: Most ML
models focus on prediction accuracy and are not
optimized to reveal mechanistic or causal ecological

Weak

Random forests predict soil pH-driven community

shifts but fail to identify why Acidobacteria decline

[31].

e Metadata Limitations: Incomplete or incon-

relationships. interpretability = example:

sistent environmental metadata reduce the
performance of supervised models and hinder
reproducibility across studies.

The Al-based functional clustering framework for
microbial ecology is presented in Fig. 3. This
architecture supports scalable ecological modeling,
environmental  monitoring, and  bioindicator
identification. The flowchart illustrates the integration
of diverse datasets, including climate data, legacy
environmental metadata, metagenomic sequences,
and pathogen screening results, into a unified
functional clustering model. Using graph neural
networks and unsupervised learning, the processing
yields two main output categories: (1) Output Layer,
which involves identifying functional guilds (microbial
communities) and spatial niches (microhabitat
distributions), and ecological outcomes, which include
assessing the current ecosystem status (e.g., spatial
mapping) and gradient analysis (e.g., microbial

abundance by soil depth).
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Figure 3. Al-based functional clustering framework for ecological microbiology.

3.3. Clinical Microbiology and Infectious Disease
Background and Motivation
Accurate and timely microbial diagnostics are
essential in clinical microbiology. However, traditional
methods like culture-based assays, Gram staining, and
PCR are slow and may not detect polymicrobial,
fastidious, or rare pathogens. Additionally, the rise of
antibiotic resistance worldwide requires predictive
tools that surpass routine laboratory tests. Al has the
potential to revolutionize infectious disease
diagnostics by combining imaging, genomics, and
electronic health records (EHRs) into scalable
decision-making systems.
Al-Driven Advances
e Image-Based Diagnostics: Convolutional neural
networks (CNNs) have achieved >94% accuracy in
Gram stain classification and microbial colony
morphology analysis, reducing human error and
inter-observer variability [32].
e Metagenomic Pathogen Detection: DeepPath-

way [33] and similar deep learning models can

predict pathway gene expression from Haematoxylin
and Eosin (H&E)-stained images computed by
summarizing the expression of genes using
established gene set definitions. Success:
DeepPathway could have potential translational
applications for diagnostics and treatment
monitoring in clinical settings[33].

e Antimicrobial Resistance (AMR) Prediction:
Models such as support vector machines (SVMs),
XGBoost,

demonstrated high accuracy in predicting resistance

and transformer architectures have

profiles from genomic and metagenomic data [34-
36].

¢ (NLP) for EHRs: Tools like BioBERT and
Clinical BERT extract clinical features (e.g., early
signs of sepsis, infection sites, or prior antibiotic
exposure) from unstructured medical notes,
enhancing triage and personalized treatment

planning [37].
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Figure 4. Al-integrated pipeline for microbial diagnostics and treatment support.

Challenges and Gaps

e Lack of Generalizability: Many deep learning
models are trained on data from North America and
Europe and do not generalize well to other
populations due to differences in pathogen

prevalence, host genetics, and clinical protocols [14].

Despite numerous resistance mechanisms and

limited sequencing data from phenotypically
characterized bacterial isolates, creating a universal
phenotype prediction network remains a significant
challenge [38].

¢ Regulatory and Ethical Barriers: The "black-
box" nature of many DL models creates difficulties
for clinical adoption and gaining regulatory approval.

Regulatory example: FDA approval for Al-based

sepsis prediction (e.g., Epic Deterioration Index)
required 3 years of validation [39].

e Data Silos: Privacy concerns and institutional
barriers often prevent large-scale data integration
across hospitals and regions, limiting collaborative
model training.

Fig.4 shows a comprehensive clinical-AI framework
for microbial diagnostics and therapeutic decision-
making. The pipeline combines diverse data inputs,
including patient samples, microscopy images,
genomic sequences, and antimicrobial susceptibility
profiles, which undergo quality control and feature
extraction (e.g., CNN-based image analysis, k-mer
profiling). Subsequent AI analysis uses supervised

learning for resistance prediction, unsupervised
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methods for strain clustering, and deep learning
(CNNs/LSTMs) for pathogen detection. Outputs
include diagnostic reports with confidence metrics,
personalized antibiotic recommendations based on
resistance patterns, and real-time epidemiological
alerts. This integrated system supports precision
diagnostics, improves antimicrobial stewardship, and
enhances infectious disease surveillance. This
flowchart depicts an Al-integrated pipeline for
microbial diagnostics and treatment support. It
processes clinical inputs (patient samples, microscopy
images, genomic data, and antibiotic susceptibility
results) through AI preprocessing and analysis layers
(supervised ML, unsupervised learning, and deep
learning). The system generates diagnostic reports,
antibiotic recommendations, and epidemiological
alerts to support precision medicine and infection

control.

3.4. Industrial Microbiology and Biotechnology
Background and Motivation
Industrial microbiology and biotechnology enable a
wide range of applications such as fermentation,
bioremediation, enzyme production, and synthetic
biology. These applications require precise control over
microbial physiology and reactor conditions.
Traditional optimization methods like trial-and-error
or detailed mechanistic modeling are slow, costly, and
not easily adaptable. Al-driven techniques can speed
up strain design, process optimization, and adaptive
control by learning from operational data, predicting
system responses, and suggesting control strategies.
AI-Driven Advances
¢ Bioprocess Optimization: Reinforcement learn-
ing (RL) and model-based control methods have been
used to regulate key reactor parameters (pH,
dissolved oxygen, substrate feeding) in fed-batch and
continuous bioreactors. These systems develop
optimal control strategies over time, resulting in

higher product yield and stability [40].
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¢ Strain Engineering: Neural networks can predict
phenotypic outputs from genotypic features, guiding
metabolic pathway redesign and strain optimization
to increase productivity or redirect flux toward
desired compounds [41].

e Enzyme Discovery: Machine learning (ML) and
deep learning (DL) models, such as DeepEnz, predict
enzyme—substrate specificity and catalytic properties
from sequences, enabling rapid in silico screening
and prioritization of candidates for industrial enzyme
pipelines [42].

e Synthetic Biology Design: Generative models,
including generative adversarial networks (GANs)
and variational autoencoders (VAESs), have been used
to create novel promoters, ribosomal binding sites,
and regulatory circuit elements, enabling

programmable control over gene expression.

However, in vivo validation remains a challenge, as

roughly 40% of Al-designed circuits fail due to

unmodeled host interactions and context
dependence [43, 44].

Challenges and Gaps

¢ Data Scarcity and Heterogeneity: High-quality,
time-resolved industrial datasets and multi-omics
assays are sparse (for example, fewer than 50 public
Pichia pastoris fermentation datasets vs. >1,000 for
E. coli),

transferability[45].

limiting model robustness and

e Real-time Hardware Integration: Few Al
models are deployed for closed-loop, real-time
control; most are used offline for design or
simulation.

¢ Cross-Host Generalization: Al models trained on
one microbial host (e.g., E. coli) often fail to
generalize to others (e.g., Bacillus or Pichia), limiting
transferability of predictions.

¢ Interpretability and Validation: Black-box mod-
els are difficult to interpret, validate and certify,
posing regulatory and safety challenges for industrial

deployment.



Zarrindokht Emami-Karvani, et al.

BiotechIntelect, Vol. 2, No. 1 e10: 1-18 (2025)

Al provides scalable ways to speed up strain design,
enzyme discovery, and adaptive bioprocess control.
Progress depends on

more comprehensive,

standardized datasets, closer integration with
bioreactor hardware and sensors, use of mechanistic
priors for improved robustness, and enhanced
interpretability to meet industrial and regulatory
standards. The Al-Integrated feedback control system
for smart bioprocessing using real-time sensing and
digital twin simulation is shown in Fig. 5. This figure
illustrates an autonomous Al-enhanced feedback

control system for smart bioprocessing. The real-time

sensor signals (pH, temperature, dissolved oxygen,
metabolite biosensors, optical density, etc.) feed into
an AI Control Hub that performs data fusion,
predictive modeling (e.g., LSTM for growth Kkinetics,
reinforcement learning), and hybrid control policy
generation. Optimized setpoints are executed by
actuators (pumps, valves, gas flow controllers). A
digital twin runs parallel simulations for predictive
maintenance, virtual experiments, and continual
policy improvement. Closed-loop monitoring enables

adaptive, self-optimizing bioproduction.

Al Control Hub

Real-Time Model |

LSTM for growth kinetics
Reinforcement Learning

Advisory
feedback

Real-time i
teletnety Hybrid Control System
Digital
Mechanistic + ML Twin
Optimization
&y = Fed-batch
simulation
Failure
prediction
-
pH/Temperature Sensors
\——— Dissolved 0,/CO, Probes Reading

Metabolite Biosensors

telemetry

Nutrient
Dosing Pumps

Gas Flow pH
Controllers

Adjustment

@ Sensors @ Al Models @ Control System @ Actuators

Digital Twin

Figure 5. Autonomous Al-integrated feedback control architecture for smart bioprocessing.

4. Challenges and Limitations in the Applica-
tion of Al to Microbiology

Despite its transformative potential, the use of
artificial intelligence (AI) in microbiological research
ethical, and

faces various technical, biological,

infrastructural challenges. These limitations are often
specific to certain domains and can accumulate,
impacting both scientific reproducibility and practical

application in clinical and industrial environments.
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4.1. Data Quality, Bias, and Standardization
The Problem of Microbiological Noise

AI models rely on large, high-quality, annotated,
and balanced datasets. However, microbiological
datasets often suffer from:

e Sparsity: Many microbial genes, especially those
from uncultured or extremophilic taxa, remain
uncharacterized [46].

e Sampling Bias: Overrepresentation of human gut
microbiota and North American clinical isolates
skews model performance and generalizability [15].

e Protocol Variability: Differences in sample
collection, DNA extraction, library preparation, and
image acquisition introduce batch effects that
degrade reproducibility [47].

Recommendations

e Expand datasets to underrepresented environments
(e.g., deserts, deep-sea, tropical biomes).

¢ Adopt metadata standards like MIxS for microbiome
studies to ensure interoperability.

e Apply data augmentation, semi-supervised learning,
and transfer learning to compensate for class
imbalance and limited labels.

4.2. Interpretability and Trust in Model Outputs

The “Black Box” Barrier

Deep learning models often lack transparency,
making it hard to understand why a prediction was
made. In microbiology, especially in clinical or
regulatory settings, interpretability is crucial for trust,
validation, and decision-making [48]. A DL model may
predict AMR with high confidence but offer no
explanation for which genes influenced the decision.

¢ SHAP, LIME, and other explainable AI (XAI) tools
are underutilized in microbiome research.

Recommendations

o Integrate XAI frameworks into microbiological Al
pipelines.

e Combine black-box models with mechanistic

biological networks to improve interpretability.
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e Encourage journals and funders to require model

transparency for translational research.

4.3. Generalizability and Overfitting Across Domains

Al models in microbiology often overfit due to:

e Small sample sizes

e High feature dimensionality (e.g., millions of gene
variants)

¢ Lack of cross-domain or cross-population validation

For example, an AMR prediction model trained on
E. coli from the U.S. may perform poorly on isolates
from Southeast Asia with different resistance profiles
[14]. AMR example: Models trained on US K.
pneumoniae data fail in India due to divergent
resistance mechanisms [49].

Recommendations

Use federated learning to collaboratively train
models without sharing raw data.

Require external validation on taxonomically or
geographically distinct test sets.

Promote participation in community benchmarking
challenges (e.g., CAMI, OpenML).

Transfer learning success: Pre-training on global
ARG databases improved Southeast Asian AMR
prediction by 25% [35].

4.4. Ethical, Legal, and Social Implications (ELSI)

Clinical and Environmental Concerns

¢ Privacy: Linking microbial signatures to personal
health information can raise privacy issues in
personalized medicine.

¢ Dual-Use Risk: Predictive tools for virulence
factors or AMR genes could be misused for malicious
purposes.

e Governance Gaps: There are no clear legal

access to

frameworks for ownership or

environmental microbial data, particularly in
international or public health contexts. Equity: 78%
of Al-microbiology tools are developed in high-
income countries, limiting LMIC access (WHO

2024).
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Recommendations

e Establish ethical guidelines for AI applications in
microbiology [50].

e Develop legal frameworks for data sharing,
surveillance, and benefit-sharing.

e Include ELSI review boards in publicly funded AI-

microbiology projects.

4.5. Technical Infrastructure and Workforce Gaps
Resource Inequities

Many microbiology labs especially in low- and
middle-income countries lack the computational
infrastructure or interdisciplinary expertise to develop
and apply Al tools.

Recommendations

BiotechIntelect, Vol. 2, No. 1 e10: 1-18 (2025)

e Develop cloud-based and mobile-friendly Al
platforms.
e Design no-code and low-code AI tools for non-
experts.
e Invest in cross-training programs that integrate
microbiology, bioinformatics, and machine learning.
While AI offers transformative potential for
microbiology, its implementation faces substantial
challenges across technical, ethical, and operational
areas. Key limitations such as data heterogeneity,
model interpretability issues, and ethical uncertainties
affect diagnostic accuracy and clinical adoption. Table
3 summarizes these major obstacles, their downstream
effects, and practical strategies to promote responsible

AT use in microbial research and diagnostics.

Table 3. Key limitations in microbiological AI applications and recommended responses

Challenge Impact Suggested Solutions

Data bias and variability Reduced mo .dd generalization and Diverse datasets, metadata standards, transfer learning
reproducibilitv

Model opacity Regulatory and scientific trust barriers Explainable AI, hybrid modeling

Overfitting/generalizability

Ethical and legal ambiguity

Infrastructure/workforce

Limited global access to Al tools
gap

Failed deployment across taxa or ecosystems

Delayed deployment; biosecurity risks

External validation, federated learning, multi-center
benchmarks

ELSI protocols, legal governance

Cloud/mobile platforms, inclusive training programs

5. Future Directions and Opportunities in AI-

Driven Microbiology

The next decade is expected to bring together
microbiology, artificial intelligence (AI), and systems
biology, leading to more predictive, personalized, and
participatory microbial science. Below are key frontier
areas that are likely to shape the upcoming wave of
innovation.

5.1. From Prediction to Causal Inference

While most current AT models excel at pattern
recognition, they rarely uncover causality.
Understanding the “why” behind microbial behaviors
is essential for hypothesis generation, experimental
validation, and robust intervention [45, 51].

Emerging Trends

e Causal Discovery Algorithms are being adapted to
ecological time-series and microbiome datasets [21].
e Counterfactual Simulations can help evaluate how
altering specific microbial taxa or genes might change
host phenotypes or environmental outcomes.
Opportunity
Integrating causal inference tools into microbiome
platforms will enable mechanistic discovery beyond
correlation.
5.2. Explainable and Human-Centered Al
embedded

environmental decision-making, transparency and

As AI Dbecomes in clinical and

trust are essential [52].

Emerging Trends
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¢ Explainable AI (XAI) tools tailored for biology, such
as SHAP for feature attribution and attention-based
mechanisms in sequence models.

e Interactive Dashboards that allow domain experts to
interrogate models and visualize decision logic.

¢ Expert integration: Clinician-Al co-design improved
sepsis model adoption.

Opportunity

Making Al interpretable will enhance its adoption in

health,

diagnostic processes.

5.3. Al-Enhanced Synthetic Biology

public environmental monitoring, and

Al models are already accelerating the design of

novel enzymes, pathways, and regulatory elements.

The next step is closed-loop synthetic biology, where AI
designs, predicts, and adapts synthetic circuits in real
time. Limitation: Al-designed genetic circuits fail in
vivo 40% of time due to unmodeled host interactions
[53].
Emerging Trends
o Generative Design using GANs, VAEs, and protein
language models (e.g., ProGen, ProtGPT2).
e Robotic Automation + AI in Design—Build—Test—
Learn (DBTL) cycles.
Opportunity
Al can make synthetic biology faster, cheaper, and
more for applications in

robust, especially

biomanufacturing and biosensing.

Al-Microbiology Convergence

Multi-Omics Integration
* Modular architectures
» Spatiotemporal modeling
* Regulatory networks

[
[

Smart Bioreactor
Systems
* Al-controlled fermentation
* Real-time metabolite
optimization

Al-Driven
Microbial
Function

Discovery

Precision
Diagnostics
Strain
Identification
* Resistance
prediction

Novel Antibiotic
Discovery

Target prediction
Generative design

Explainable & Causal Al
* SHAP/LIME frameworks

* Mechanistic-DL hybrids

* Causal inference

Global
Microbial
Q Discovery

Responsible
Innovation

» Regulatory approval
¢ Quality control

l
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Open-access Waste-to-value
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Global Carbon-
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negative
production

Figure 6. AI-Microbiology convergence framework for future innovation.
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5.4. Digital Twins for Microbial Systems

A digital twin is a dynamic, Al-powered simulation
of a physical system, such as a microbial ecosystem or
These

monitoring, prediction, and optimization.

bioreactor. models provide real-time

Applications

e Industrial Fermentation: Adaptive control of pH,
oxygen, and nutrient flow.

¢ Bioremediation: Simulation of pollutant degradation
under different microbial consortia.

e Microbiome Engineering: Testing probiotic or phage
therapy strategies in silico.

Challenge: Metabolic model integration requires
real-time multi-omics data (currently feasible only in
industrial settings).

Opportunity

Digital twins could revolutionize how we test
hypotheses and deploy interventions in microbial
systems.

5.5. Planetary-Scale Microbial Intelligence

With advances in remote sensing, IoT-powered

environmental  monitoring, and  distributed

computing, it is now possible to develop Al systems
that track microbial dynamics across the biosphere.

Current effort: Earth Microbiome Project’s AI network

monitors 500+ sites for pathogen emergence.

Emerging Trends

¢ Global Microbiome Surveillance Networks that
combine environmental sensors, drones, and
satellites with cloud-based AI models.

e Climate-Microbiome Models that predict feedback
loops between microbial activity and ecosystem
health.

Opportunity

Al could serve as a planetary-scale early warning

system for environmental degradation, pathogen

emergence, or ecosystem tipping points.

As shown in Fig.6, the future of Al-driven microbiology

depends on a convergence framework that combines

multi-omics data, AlI-powered discovery engines, and
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smart biotechnologies. This systems approach allows

for:

e Precision diagnostics (e.g., strain identification via
explainable AI),

e Sustainable solutions (e.g., carbon-negative produc-
tion from waste),

¢ Responsible innovation (e.g., SHAP/LIME for model
transparency and equitable knowledge sharing).

Synergistic links between these areas, enabled by

tools like federated learning and hybrid mechanistic-

AT models, will foster scalable, ethical advances in

microbial science. Systems-level integration of multi-

omics data, Al-driven discovery pipelines, and

sustainable biotechnologies within an ethical
innovation framework. Arrows indicate synergistic
pathways that allow for precision diagnostics, new

bioproducts, and equitable solutions.
6. Conclusion

Artificial intelligence (AI) is rapidly reshaping
microbiology, bridging fundamental research in
microbial genomics and ecology with practical
applications in diagnostics, biomanufacturing, and
planetary health. This review uniquely integrates Al
applications across diverse microbiological domains,
emphasizing their potential to uncover novel insights
and drive innovation. Al models enhance genome
annotation, accelerate antimicrobial resistance
prediction, enable real-time bioprocess optimization,
and reveal intricate ecological dynamics. However,
challenges such as limited interpretability, data biases,
and ethical considerations must be addressed to ensure
reliable and equitable deployment. Interdisciplinary
collaboration among microbiologists, data scientists,
clinicians, and engineers is essential to develop
biologically meaningful, ethically sound, and
technically robust AI systems. Looking forward,
advancements in explainable Al, hybrid mechanistic-
data-driven models, causal inference, and global

microbiome surveillance will empower researchers to
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explore deeper questions, design smarter systems, and
unlock the full potential of microbial science for
societal and environmental benefit.
Recommendations

Researchers: Adopt XAI and causal inference.
Funders: Support LMIC infrastructure.

Policymakers: Develop AI-microbiology governance.
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