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ABSTRACT 

The rapid growth of microbiological data, fueled by high-throughput sequencing, 

automated imaging, and environmental sensors, has outpaced the capabilities of 

traditional analytical methods. Artificial intelligence (AI), particularly machine 

learning (ML) and deep learning (DL), has emerged as a powerful tool for 

uncovering complex patterns in these vast, multidimensional datasets. This 

review critically examines the integration of AI across key microbiological 

domains, including microbial genomics, metagenomics, environmental 

microbiology, clinical diagnostics, and industrial biotechnology. We highlight 

how AI accelerates genome annotation, enables precise phenotypic profiling, 

enhances pathogen detection, and optimizes bioprocesses. Key examples include 

convolutional neural networks for microbial colony classification, transformer 

models for antibiotic resistance prediction, and generative AI for synthetic 

biology design. However, challenges such as data sparsity, limited model 

interpretability, and inconsistent benchmarking in ecological and clinical 

contexts persist. We explore emerging solutions, including explainable AI, 

federated learning, and hybrid models combining mechanistic and data-driven 

approaches, to enhance transparency, scalability, and ethical deployment. This 

review, the first to synthesize AI applications across clinical, environmental, and 

industrial microbiology while addressing ethical and infrastructural challenges, 

aims to guide researchers, clinicians, and bioengineers in leveraging AI for 

transformative microbiological advancements. 

 

What is “already known”: 
 

 Artificial intelligence has demonstrated promise in addressing specific microbiological 
challenges: Genome annotation and pathogen detection. 

 Its applications remain fragmented across subfields and face persistent hurdles: Data 
sparsity, model interpretability, and benchmarking inconsistencies. 

 No comprehensive framework existed to unify AI-driven advances across clinical, 
environmental, and industrial microbiology. 

What this article adds:  AI transforming microbiology enables rapid genome annotation, accurate pathogen 
detec¬tion, and optimized bioprocess control. 

 Cross-domain integration: Covers applications in genomics, clinical, environmental, and 
industrial microbiology. 

 Addressing challenges: Highlights solutions like explainable AI, hybrid models, and 
federated learning for better transparency and collaboration. 

 Future opportunities: Digital twins, AI-enhanced synthetic biology, and planetary-scale 
microbial intelligence for global monitoring and innovation. 
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1. Introduction: Microbiology in the Age of 

Artificial Intelligence 

1.1. The Data Deluge in Microbiology 

Microbiology has entered a data-intensive era. 

Advances in sequencing technologies, high-throughput 

culturing, and real-time biosensors have produced 

large, diverse datasets. In 2021 alone, over 3.6 million 

microbial genomes were deposited in public 

repositories-a number that continues to grow 

exponentially (NCBI Genome, 2023). As of 2024, 

public repositories now contain over 5 million 

microbial genomes [NCBI, 2024]. Simultaneously, 

automated microscopy, environmental metagenomics, 

and phenotypic profiling platforms have generated 

complex image-based and spatiotemporal data at 

unprecedented scales. 

However, this explosion of data has surpassed the 

analytical capabilities of traditional microbiological 

tools. While classical methods remain essential, their 

ability to scale is challenged by the rapid growth of 

microbiological data. Classical methods-ranging from 

culture-dependent techniques to linear statistical 

models—are increasingly limited in managing the 

volume, complexity, and dimensionality of modern 

microbiological datasets. 

1.2. Artificial Intelligence as a Transformative 
Framework 

Artificial intelligence (AI), especially machine 

learning (ML) and deep learning (DL), brings a major 

change. These models can identify nonlinear patterns, 

uncover hidden structures, and produce predictive 

insights from microbiological data without needing 

many human-created rules. Unlike traditional 

bioinformatics pipelines that depend on predefined 

heuristics, AI learns patterns directly from raw data. 

Landmark examples include: 

 AlphaFold for protein structure prediction [1]. 

 DeepARG for antimicrobial resistance (AMR) gene 

classification [2]. 

 CNNs for automated microbial colony phenotyping 

[3]. 

 ESM-3 (2024) for protein language modeling [4]. 

MicrobeFormer (2023) for metagenomic binning 

[5]. 
 

1.3. Bridging Gaps in Traditional Microbiology 

Traditional methods are still reductionist and have 

low throughput. Culture-based diagnostics detect less 

than 1% of environmental microbes [6]. Mapping 

genotype to phenotype is often complicated by 

nonlinear regulation and context-dependent gene 

expression. Manual microscopy and taxonomic 

annotation are labor-intensive and prone to bias. 

Additionally, standard statistical tools like PCA, 

clustering, and regression often fail to capture the 

dynamic, hierarchical, and nonlinear features of 

microbial communities, especially in multi-omics or 

longitudinal studies. Despite advances in AI, culture-

based methods remain essential for functional 

validation of AI-predicted phenotypes. AI offers a way 

to model this complexity more comprehensively. 

1.4. Why This Review? 

While many reviews have covered AI in 

microbiology, most are fragmented and limited to 

either clinical microbiology, microbial ecology, or 

specific algorithmic areas. Recent reviews focus 

narrowly (e.g., [7]; [8]), lacking cross-domain 

synthesis. There is still a need for integrated 

perspectives that: 

 Compare AI tools across microbiological subfields 

 Critically evaluate interpretability, performance, and 

reproducibility 

 Address ethical, technical, and deployment 

challenges 

This review uniquely combines technical, ethical, 

and deployment challenges across various 

microbiology subfields. It demonstrates how multi-

omics data can be integrated using machine learning 
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for a systems-based approach in microbiology, as 

shown in Fig. 1. Genomic data (including whole-

genome sequencing and metagenomics), genotypic 

data (sequencing-based), and phenotypic data 

(imaging-based) are processed with both unsupervised 

learning methods (such as generative models and 

causal inference) and supervised learning methods 

(like Random Forests, Convolutional Neural Networks, 

and Long Short-Term Memory networks). These 

integrated analyses enable microbial community 

modeling and support applications such as real-time 

control. Outcomes include improved process control, 

discovery of new byproducts (e.g., antibiotics), 

optimization modeling, and ecological forecasting of 

pathogens. Examples include DeepARG for antibiotic 

discovery [2] and BioDeep for real-time bioreactor 

control [9]. Key processes highlighted are bacterial 

annotation, fermenter harvesting, and the discovery of 

new antibiotics. 

Figure 1 illustrates how multi-omics data (genomic, 

genotypic, phenotypic) are integrated using hybrid AI 

models that combine unsupervised (generative, causal 

inference) and supervised learning (CNNs, LSTMs) 

methods. The processed data supports microbial 

community modeling and applications such as real-

time bioreactor control and bacterial annotation. 

Major outcomes include the discovery of new 

antibiotics (e.g., DeepARG-like systems), optimization 

modeling, and ecological forecasting of pathogens 

through predictive microbiology frameworks. 

 

 

Figure 1. Artificial intelligence in microbiology: a systems view. 

 

2. Artificial Intelligence and Machine Learning 

in Microbiological Research 

2.1. Foundations: From Pattern Recognition to Biolog-

ical Insight 

Artificial intelligence (AI) includes computational 

systems that can learn, reason, and make decisions, 

abilities usually linked to human thinking. Within AI, 

machine learning (ML) uses algorithms that learn from 

labeled or unlabeled data to get better at predictions 

over time. Deep learning (DL), a part of ML, employs 

multi-layered neural networks to find hierarchical 

features and is especially useful in handling complex, 

unstructured data like images, sequences, and time-

series [10]. In microbiology, CNNs are great at 

recognizing spatial patterns (e.g., colony images), 

while transformers capture long-range dependencies 

in genomic sequences (e.g., promoter regions). 

Microbiology, increasingly influenced by high-

dimensional data, has become an active area for AI. 

From genome annotation and phenotype prediction to 

modeling microbial communities, AI systems facilitate 
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analyses that are difficult to perform with traditional 

statistical methods. 

2.2. Taxonomy of AI Approaches in Microbiology 

The landscape of AI approaches in microbiology can 

be organized taxonomically by learning paradigm, 

model architecture, and domain-specific utility. Table 

1 systematically categorizes these methods into 

supervised, unsupervised, and semi-/self-supervised 

learning frameworks, detailing representative model 

classes (e.g., CNNs, autoencoders), their 

microbiological applications, inherent strengths, and 

operational limitations. The table now includes specific 

examples and microbiology-contextual limitations. 

This structured comparison allows for informed 

selection of AI techniques for specific microbial 

research goals. 

 

 

Table 1. Taxonomy of AI Approaches in Microbiology 

Learning Type Model Class 
Microbiological 
Applications 

Strengths Limitations 

Supervised 
Random Forest 
(RF) 

Microbiome classification, 
resistance gene prediction 

Robust to overfitting; 
interpretable 

Less effective on high-
dimensional, sparse data 

 
Support Vector 
Machines 

AMR prediction, species 
classification 

Good for 
binary/multiclass tasks; 
fast 

Poor performance on imbalanced 
or noisy data 

 
Convolutional 
Neural Networks 
(CNNs) 

Image-based phenotyping 
(colony shape, FISH 
segmentation) 

High accuracy on 
unstructured data 

Requires large labeled datasets 
(e.g., >10,000 annotated images), 
which are scarce for rare 
pathogens. 

 
Recurrent Neural 
Networks (LSTM) 

Fermentation modeling, 
microbial growth prediction 

Captures temporal 
dynamics 

Prone to instability; requires high-
quality time-series 

Unsupervised 
Autoencoders, 
Clustering 

Dimensionality reduction, 
pattern mining in community 
profiles 

No need for labels; 
reveals latent structure 

Limited biological interpretability 

Semi-/Self-
supervised 

Transformers, 
Contrastive 
Learning 

Gene function prediction, 
protein annotation 

Effective with sparse 
labels; uses unlabeled 
data 

Complex to train and validate 
biologically 

Generative GANs, VAEs 
Enzyme design, promoter 
optimization, and synthetic 
biology 

Enables novel sequence 
generation 

Risk of unrealistic outputs without 
biological priors 

 

2.3. Open-Source AI Platforms in Microbiology 

A critical evaluation of open-source platforms is 

crucial for advancing AI-driven microbiome research. 

Table 2 offers a comparative analysis of major tools, 

outlining their core functionalities, AI methodologies, 

and key operational limitations to assist in platform 

selection. It now includes user base and integration 

details. Most platforms operate in isolation and lack 

support for seamless, end-to-end pipelines from raw 

data intake to biological insight generation. Emerging 

platforms like KBase (2023) combine genomics, 

metabolomics, and ML to address fragmentation. 

 

Table 2. Notable examples of open-source tools support AI-driven microbiological analysis 

Tool/Platform Functionality AI Methods User Base 
Integration 
Capabilities 

Limitations 

QIIME 2 [11] 
Microbiome community 
profiling 

RF, Naïve 
Bayes 

50k+ None 
Limited DL support; lacks spatial 
modeling 

DeepMicro [12] 
Microbiome classification 
via DL 

CNN, DNN 5k+ None 
No real-time inference; lacks 
interpretability tools 

DeepARG [2] AMR gene prediction DNN 10k+ None 
Only focused on ARGs; infrequent 
updates 

MetaNN [13] Metagenomic binning ResNet 2k+ Partial 
High compute cost; performance 
depends on ecosystem 

KBase Multi-omics integration 
RF, DL, 
Hybrid 

10k+ Multi-omics 
Steep learning curve; limited real-
time control 

SciSpacy, 
BioBERT 

Biomedical NLP, EHR 
mining 

Transformers 
(NLP) 

 
20k+ 

Partial 
Limited microbial domain 
adaptation 
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2.4. Methodological Gaps and Emerging Solutions 

Current AI-driven methodologies in microbiology 

face significant gaps that hinder their full potential. 

Key limitations include the persistent trade-off 

between model interpretability and predictive accuracy 

[14], alongside challenges in data quality stemming 

from scarcity, noise, and sampling biases. The 

underutilization of unsupervised learning for 

exploratory microbiome analysis remains notable, 

while fragmented workflows impede multi-omics data 

integration. Further complications arise from 

inconsistent benchmarking practices and validation 

frameworks across studies [15] [16]. This section 

critically examines these methodological constraints 

and highlights emerging solutions to advance the field. 

Despite recent progress, critical limitations persist: 

 Interpretability vs. Accuracy: High-performing DL 

models (e.g., CNNs, LSTMs, Transformers) remain 

opaque. Explainable AI (XAI) tools such as SHAP or 

LIME are underutilized in microbiological research 

[17]. 

 Data Quality and Bias: Models trained on curated 

datasets from industrialized regions often 

underperform in global or environmental 

microbiomes [14, 15]. 

 Underuse of Unsupervised Learning: Microbial 

ecology would benefit from unsupervised methods 

capable of revealing emergent community structures 

without labels [16]. 

 Fragmented Workflows: There is a lack of unified 

platforms supporting longitudinal, spatial, and 

multi-omics data integration. 

 Benchmarking and Validation: Few tools undergo 

standardized benchmarking outside of initiatives like 

CAMI [18]. 

2.5. Toward Hybrid and Explainable AI in Microbiology 

The integration of hybrid AI models offers a 

transformative approach for microbiology by 

combining mechanistic biological frameworks with 

data-driven algorithms to improve predictive accuracy 

[19]. An example of a hybrid model is COMETS (2023), 

which merges metabolic networks with machine 

learning to predict spatial competition in biofilms [20]. 

Explainable AI (XAI) tools are becoming increasingly 

important for tracing predictions back to biological 

pathways, ensuring transparency in both clinical and 

research applications. Federated and transfer learning 

techniques allow for collaborative model training 

across institutions while maintaining data privacy, a 

critical need for sensitive microbiological datasets [21]. 

Causal discovery methods, based on causal AI 

algorithms [22], are developing to explore complex 

microbial interactions beyond simple correlation 

insights. This section discusses how these combined 

advances address key limitations in microbial AI 

systems while emphasizing biological interpretability 

and ethical safeguards. 

 Hybrid Models: Integrating mechanistic biological 

frameworks (e.g., metabolic models, gene regulatory 

networks) with data-driven AI to boost both accuracy 

and interpretability. 

 Explainable AI: Tailoring XAI tools to 

microbiological logic, allowing users to trace 

predictions back to biological pathways or 

hypotheses. 

 Federated and Transfer Learning: Enabling 

collaborative AI across datasets and institutions 

without raw data sharing a key factor for privacy in 

clinical applications [19]. 

 Causal Discovery: Leveraging causal AI algorithms to 

move beyond correlation and toward mechanistic 

understanding of microbial systems [21],[22]. 

These methods are crucial for advancing AI from 

just an automation tool to a scientific discovery engine 

in microbiology. 

3. Applications of AI in Key Microbiological 

Domains 

3.1. Microbial Genomics and Metagenomics 

Background and Motivation 
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The rapid growth of microbial whole-genome 

sequencing and metagenomic datasets, now reaching 

petabyte scale, has created an urgent need for tools that 

can provide fast, accurate, and scalable analysis. 

Traditional sequence alignment and rule-based 

annotation methods are becoming increasingly 

insufficient, especially when dealing with incomplete 

or highly diverse genomes from uncultivated taxa. 

AI-Driven Advances 

 Taxonomic Classification: Tools such as Kraken2 

[23] and MetaNN [13] use deep learning 

architectures to improve species-level classification 

in complex metagenomic samples. MetaNN, in 

particular, uses residual networks to surpass 

traditional alignment-based methods. AI tools like 

MetaNN reach 95% taxonomic accuracy versus 85% 

for Kraken2 but need 10× more GPU hours [13, 23]. 

 Genome Binning: Variational autoencoders (e.g., 

VAMB) facilitate probabilistic clustering of contigs, 

supporting high-accuracy recovery of metagenome-

assembled genomes (MAGs) [24]. 

 Functional Annotation: DeepARG [2] and 

transformer-based models like ESM and ProtT5 [25] 

are used to identify antimicrobial resistance (AMR) 

genes and assign functions to proteins with minimal 

labeled data. For AMR prediction, DeepARG reduces 

false negatives by 40% compared to CARD [2]. 

 Protein Structure Prediction: AlphaFold2 [1] 

represents a major leap in applying deep learning to 

predict 3D protein structures and interactions 

directly from sequence information, even for proteins 

with no homologs in databases. 

Challenges and Gaps 

 Training Data Limitations: Rare or extremo-

philic taxa are underrepresented in existing datasets, 

leading to high false-positive rates and poor model 

generalization in non-model systems [26]. 

 Functional Validation: Predictions from DL 

models often lack phenotypic or ecological validation, 

limiting their interpretive power. 

 Computational Demands: Many AI frameworks 

require high-performance computing (HPC) 

infrastructure, restricting accessibility in resource-

limited settings. 

The schematic shows how deep neural networks can 

automate genome annotation and structure-function 

analysis in high-throughput microbiome research, as 

depicted in Fig. 2. The input genomic data (e.g., DNA 

sequences) are processed with an autoencoder to 

produce latent feature embedding. These features are 

then used for downstream prediction tasks such as: (1) 

Identification of antimicrobial resistance genes and (2) 

3D protein structure modeling related to microbial 

function and pathogenicity. 

 

Figure 2. Schematic representation of the deep learning framework for microbial genomic analysis. 



Zarrindokht Emami-Karvani, et al.      BiotechIntelect, Vol. 2, No. 1 e10: 1-18 (2025) 

 7 

3.2. Microbial Ecology and Environmental Microbiology 

Background and Motivation 

Microbial communities play key roles in ecosystem 

processes such as nutrient cycling, pollutant 

breakdown, and biogeochemical control. However, 

traditional methods like fluorescence in situ 

hybridization (FISH) and denaturing gradient gel 

electrophoresis (DGGE) lack the resolution and 

scalability needed to monitor microbial dynamics 

across different spatial and temporal scales. The 

complexity and diversity of environmental 

microbiomes require computational tools that can 

manage nonlinear, high-dimensional, and often 

incomplete data. 

AI-Driven Advances 

 Community Composition Prediction: Machine 

learning models such as random forests and gradient 

boosting algorithms have effectively been used to 

predict microbial community composition based on 

environmental variables like pH, moisture, salinity, 

and heavy metal content [27]. 

 Ecological State Detection: Unsupervised 

learning methods, such as t-SNE, UMAP, and k-

means clustering, have uncovered previously 

unknown ecological states in aquatic and soil 

microbiomes [28]. 

 Temporal Dynamics Modeling: Deep learning 

models such as convolutional neural networks 

(CNNs) and long short-term memory (LSTM) 

networks can identify seasonal and disturbance-

driven shifts in microbial communities from 

longitudinal environmental datasets [29]. 

 Microbial Interaction Networks: Graph neural 

networks (GNNs) are now used to model microbial 

co-occurrence and trophic interaction networks, 

leading to a better understanding of microbial  

consortia and their functional stability [30]. 

Challenges and Gaps 

 Sparse and Irregular Time-Series: Environ-

mental data are often discontinuous or sparsely 

sampled, limiting the performance and stability of 

time-dependent models. 

 Weak Ecological Interpretability: Most ML 

models focus on prediction accuracy and are not 

optimized to reveal mechanistic or causal ecological 

relationships. Weak interpretability example: 

Random forests predict soil pH-driven community 

shifts but fail to identify why Acidobacteria decline 

[31]. 

 Metadata Limitations: Incomplete or incon-

sistent environmental metadata reduce the 

performance of supervised models and hinder 

reproducibility across studies. 

The AI-based functional clustering framework for 

microbial ecology is presented in Fig. 3. This 

architecture supports scalable ecological modeling, 

environmental monitoring, and bioindicator 

identification. The flowchart illustrates the integration 

of diverse datasets, including climate data, legacy 

environmental metadata, metagenomic sequences, 

and pathogen screening results, into a unified 

functional clustering model. Using graph neural 

networks and unsupervised learning, the processing 

yields two main output categories: (1) Output Layer, 

which involves identifying functional guilds (microbial 

communities) and spatial niches (microhabitat 

distributions), and ecological outcomes, which include 

assessing the current ecosystem status (e.g., spatial 

mapping) and gradient analysis (e.g., microbial 

abundance by soil depth). 
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Figure 3. AI-based functional clustering framework for ecological microbiology. 

 

 

3.3. Clinical Microbiology and Infectious Disease 

Background and Motivation 

Accurate and timely microbial diagnostics are 

essential in clinical microbiology. However, traditional 

methods like culture-based assays, Gram staining, and 

PCR are slow and may not detect polymicrobial, 

fastidious, or rare pathogens. Additionally, the rise of 

antibiotic resistance worldwide requires predictive 

tools that surpass routine laboratory tests. AI has the 

potential to revolutionize infectious disease 

diagnostics by combining imaging, genomics, and 

electronic health records (EHRs) into scalable 

decision-making systems. 

AI-Driven Advances 

 Image-Based Diagnostics: Convolutional neural 

networks (CNNs) have achieved >94% accuracy in 

Gram stain classification and microbial colony 

morphology analysis, reducing human error and 

inter-observer variability [32]. 

 Metagenomic Pathogen Detection: DeepPath-

way [33]  and similar deep learning models can 

predict pathway gene expression from Haematoxylin 

and Eosin (H&E)-stained images computed by 

summarizing the expression of genes using 

established gene set definitions. Success: 

DeepPathway could have potential translational 

applications for diagnostics and treatment 

monitoring in clinical settings[33].  

 Antimicrobial Resistance (AMR) Prediction: 

Models such as support vector machines (SVMs), 

XGBoost, and transformer architectures have 

demonstrated high accuracy in predicting resistance 

profiles from genomic and metagenomic data [34-

36].  

 (NLP) for EHRs: Tools like BioBERT and 

ClinicalBERT extract clinical features (e.g., early 

signs of sepsis, infection sites, or prior antibiotic 

exposure) from unstructured medical notes, 

enhancing triage and personalized treatment 

planning [37]. 
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Figure 4. AI-integrated pipeline for microbial diagnostics and treatment support. 

 

Challenges and Gaps 

 Lack of Generalizability: Many deep learning 

models are trained on data from North America and 

Europe and do not generalize well to other 

populations due to differences in pathogen 

prevalence, host genetics, and clinical protocols [14]. 

Despite numerous resistance mechanisms and 

limited sequencing data from phenotypically 

characterized bacterial isolates, creating a universal 

phenotype prediction network remains a significant 

challenge [38]. 

 Regulatory and Ethical Barriers: The "black-

box" nature of many DL models creates difficulties 

for clinical adoption and gaining regulatory approval. 

Regulatory example: FDA approval for AI-based 

sepsis prediction (e.g., Epic Deterioration Index) 

required 3 years of validation [39].   

 Data Silos: Privacy concerns and institutional 

barriers often prevent large-scale data integration 

across hospitals and regions, limiting collaborative 

model training. 

Fig.4 shows a comprehensive clinical-AI framework 

for microbial diagnostics and therapeutic decision-

making. The pipeline combines diverse data inputs, 

including patient samples, microscopy images, 

genomic sequences, and antimicrobial susceptibility 

profiles, which undergo quality control and feature 

extraction (e.g., CNN-based image analysis, k-mer 

profiling). Subsequent AI analysis uses supervised 

learning for resistance prediction, unsupervised 
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methods for strain clustering, and deep learning 

(CNNs/LSTMs) for pathogen detection. Outputs 

include diagnostic reports with confidence metrics, 

personalized antibiotic recommendations based on 

resistance patterns, and real-time epidemiological 

alerts. This integrated system supports precision 

diagnostics, improves antimicrobial stewardship, and 

enhances infectious disease surveillance. This 

flowchart depicts an AI-integrated pipeline for 

microbial diagnostics and treatment support. It 

processes clinical inputs (patient samples, microscopy 

images, genomic data, and antibiotic susceptibility 

results) through AI preprocessing and analysis layers 

(supervised ML, unsupervised learning, and deep 

learning). The system generates diagnostic reports, 

antibiotic recommendations, and epidemiological 

alerts to support precision medicine and infection 

control. 

 

3.4. Industrial Microbiology and Biotechnology 

Background and Motivation 

Industrial microbiology and biotechnology enable a 

wide range of applications such as fermentation, 

bioremediation, enzyme production, and synthetic 

biology. These applications require precise control over 

microbial physiology and reactor conditions. 

Traditional optimization methods like trial-and-error 

or detailed mechanistic modeling are slow, costly, and 

not easily adaptable. AI-driven techniques can speed 

up strain design, process optimization, and adaptive 

control by learning from operational data, predicting 

system responses, and suggesting control strategies. 

AI-Driven Advances                

 Bioprocess Optimization: Reinforcement learn-

ing (RL) and model-based control methods have been 

used to regulate key reactor parameters (pH, 

dissolved oxygen, substrate feeding) in fed-batch and 

continuous bioreactors. These systems develop 

optimal control strategies over time, resulting in 

higher product yield and stability [40].   

 Strain Engineering: Neural networks can predict 

phenotypic outputs from genotypic features, guiding 

metabolic pathway redesign and strain optimization 

to increase productivity or redirect flux toward 

desired compounds [41]. 

 Enzyme Discovery: Machine learning (ML) and 

deep learning (DL) models, such as DeepEnz, predict 

enzyme–substrate specificity and catalytic properties 

from sequences, enabling rapid in silico screening 

and prioritization of candidates for industrial enzyme 

pipelines [42]. 

 Synthetic Biology Design: Generative models, 

including generative adversarial networks (GANs) 

and variational autoencoders (VAEs), have been used 

to create novel promoters, ribosomal binding sites, 

and regulatory circuit elements, enabling 

programmable control over gene expression. 

However, in vivo validation remains a challenge, as 

roughly 40% of AI-designed circuits fail due to 

unmodeled host interactions and context 

dependence [43, 44].  

Challenges and Gaps 

 Data Scarcity and Heterogeneity: High-quality, 

time-resolved industrial datasets and multi-omics 

assays are sparse (for example, fewer than 50 public 

Pichia pastoris fermentation datasets vs. >1,000 for 

E. coli), limiting model robustness and 

transferability[45].   

 Real-time Hardware Integration: Few AI 

models are deployed for closed-loop, real-time 

control; most are used offline for design or 

simulation. 

 Cross-Host Generalization: AI models trained on 

one microbial host (e.g., E. coli) often fail to 

generalize to others (e.g., Bacillus or Pichia), limiting 

transferability of predictions. 

 Interpretability and Validation: Black-box mod-

els are difficult to interpret, validate and certify, 

posing regulatory and safety challenges for industrial 

deployment. 
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AI provides scalable ways to speed up strain design, 

enzyme discovery, and adaptive bioprocess control. 

Progress depends on more comprehensive, 

standardized datasets, closer integration with 

bioreactor hardware and sensors, use of mechanistic 

priors for improved robustness, and enhanced 

interpretability to meet industrial and regulatory 

standards. The AI-Integrated feedback control system 

for smart bioprocessing using real-time sensing and 

digital twin simulation is shown in Fig. 5. This figure 

illustrates an autonomous AI-enhanced feedback 

control system for smart bioprocessing. The real-time 

sensor signals (pH, temperature, dissolved oxygen, 

metabolite biosensors, optical density, etc.) feed into 

an AI Control Hub that performs data fusion, 

predictive modeling (e.g., LSTM for growth kinetics, 

reinforcement learning), and hybrid control policy 

generation. Optimized setpoints are executed by 

actuators (pumps, valves, gas flow controllers). A 

digital twin runs parallel simulations for predictive 

maintenance, virtual experiments, and continual 

policy improvement. Closed-loop monitoring enables 

adaptive, self-optimizing bioproduction. 

 

 

Figure 5. Autonomous AI-integrated feedback control architecture for smart bioprocessing. 

 

4. Challenges and Limitations in the Applica-

tion of AI to Microbiology 

Despite its transformative potential, the use of 

artificial intelligence (AI) in microbiological research 

faces various technical, biological, ethical, and 

infrastructural challenges. These limitations are often 

specific to certain domains and can accumulate, 

impacting both scientific reproducibility and practical 

application in clinical and industrial environments. 
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4.1. Data Quality, Bias, and Standardization 

The Problem of Microbiological Noise 

AI models rely on large, high-quality, annotated, 

and balanced datasets. However, microbiological 

datasets often suffer from: 

 Sparsity: Many microbial genes, especially those 

from uncultured or extremophilic taxa, remain 

uncharacterized [46]. 

 Sampling Bias: Overrepresentation of human gut 

microbiota and North American clinical isolates 

skews model performance and generalizability [15]. 

 Protocol Variability: Differences in sample 

collection, DNA extraction, library preparation, and 

image acquisition introduce batch effects that 

degrade reproducibility [47].  

Recommendations 

 Expand datasets to underrepresented environments 

(e.g., deserts, deep-sea, tropical biomes). 

 Adopt metadata standards like MIxS for microbiome 

studies to ensure interoperability. 

 Apply data augmentation, semi-supervised learning, 

and transfer learning to compensate for class 

imbalance and limited labels.  

4.2. Interpretability and Trust in Model Outputs 

The “Black Box” Barrier 

Deep learning models often lack transparency, 

making it hard to understand why a prediction was 

made. In microbiology, especially in clinical or 

regulatory settings, interpretability is crucial for trust, 

validation, and decision-making [48]. A DL model may 

predict AMR with high confidence but offer no 

explanation for which genes influenced the decision. 

 SHAP, LIME, and other explainable AI (XAI) tools 

are underutilized in microbiome research.  

Recommendations 

 Integrate XAI frameworks into microbiological AI 

pipelines. 

 Combine black-box models with mechanistic 

biological networks to improve interpretability. 

 Encourage journals and funders to require model 

transparency for translational research. 

 

4.3. Generalizability and Overfitting Across Domains 

AI models in microbiology often overfit due to: 

 Small sample sizes 

 High feature dimensionality (e.g., millions of gene 

variants) 

 Lack of cross-domain or cross-population validation 

For example, an AMR prediction model trained on 

E. coli from the U.S. may perform poorly on isolates 

from Southeast Asia with different resistance profiles 

[14]. AMR example: Models trained on US K. 

pneumoniae data fail in India due to divergent 

resistance mechanisms [49]. 

Recommendations 

Use federated learning to collaboratively train 

models without sharing raw data. 

Require external validation on taxonomically or 

geographically distinct test sets. 

Promote participation in community benchmarking 

challenges (e.g., CAMI, OpenML). 

Transfer learning success: Pre-training on global 

ARG databases improved Southeast Asian AMR 

prediction by 25% [35]. 

4.4. Ethical, Legal, and Social Implications (ELSI) 

Clinical and Environmental Concerns 

 Privacy: Linking microbial signatures to personal 

health information can raise privacy issues in 

personalized medicine. 

 Dual-Use Risk: Predictive tools for virulence 

factors or AMR genes could be misused for malicious 

purposes.  

 Governance Gaps: There are no clear legal 

frameworks for ownership or access to 

environmental microbial data, particularly in 

international or public health contexts. Equity: 78% 

of AI-microbiology tools are developed in high-

income countries, limiting LMIC access (WHO 

2024). 
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Recommendations 

 Establish ethical guidelines for AI applications in 

microbiology [50]. 

 Develop legal frameworks for data sharing, 

surveillance, and benefit-sharing. 

 Include ELSI review boards in publicly funded AI–

microbiology projects. 

 

4.5. Technical Infrastructure and Workforce Gaps 

Resource Inequities 

Many microbiology labs especially in low- and 

middle-income countries lack the computational 

infrastructure or interdisciplinary expertise to develop 

and apply AI tools.  

Recommendations 

 Develop cloud-based and mobile-friendly AI 

platforms.  

 Design no-code and low-code AI tools for non-

experts. 

 Invest in cross-training programs that integrate 

microbiology, bioinformatics, and machine learning. 

While AI offers transformative potential for 

microbiology, its implementation faces substantial 

challenges across technical, ethical, and operational 

areas. Key limitations such as data heterogeneity, 

model interpretability issues, and ethical uncertainties 

affect diagnostic accuracy and clinical adoption. Table 

3 summarizes these major obstacles, their downstream 

effects, and practical strategies to promote responsible 

AI use in microbial research and diagnostics. 

 

Table 3. Key limitations in microbiological AI applications and recommended responses 

Challenge Impact Suggested Solutions 

Data bias and variability Reduced model generalization and 
reproducibility 

Diverse datasets, metadata standards, transfer learning 

Model opacity Regulatory and scientific trust barriers Explainable AI, hybrid modeling 

Overfitting/generalizability Failed deployment across taxa or ecosystems 
External validation, federated learning, multi-center 
benchmarks 

Ethical and legal ambiguity Delayed deployment; biosecurity risks ELSI protocols, legal governance 

Infrastructure/workforce 
gap 

Limited global access to AI tools Cloud/mobile platforms, inclusive training programs 

 

5. Future Directions and Opportunities in AI-

Driven Microbiology 

The next decade is expected to bring together 

microbiology, artificial intelligence (AI), and systems 

biology, leading to more predictive, personalized, and 

participatory microbial science. Below are key frontier 

areas that are likely to shape the upcoming wave of 

innovation. 

5.1. From Prediction to Causal Inference 

While most current AI models excel at pattern 

recognition, they rarely uncover causality. 

Understanding the “why” behind microbial behaviors 

is essential for hypothesis generation, experimental 

validation, and robust intervention [45, 51].  

Emerging Trends 

 Causal Discovery Algorithms are being adapted to 

ecological time-series and microbiome datasets [21]. 

 Counterfactual Simulations can help evaluate how 

altering specific microbial taxa or genes might change 

host phenotypes or environmental outcomes. 

Opportunity 

Integrating causal inference tools into microbiome 

platforms will enable mechanistic discovery beyond 

correlation. 

5.2. Explainable and Human-Centered AI 

As AI becomes embedded in clinical and 

environmental decision-making, transparency and 

trust are essential [52].  

Emerging Trends 
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 Explainable AI (XAI) tools tailored for biology, such 

as SHAP for feature attribution and attention-based 

mechanisms in sequence models. 

 Interactive Dashboards that allow domain experts to 

interrogate models and visualize decision logic. 

 Expert integration: Clinician-AI co-design improved 

sepsis model adoption. 

Opportunity 

Making AI interpretable will enhance its adoption in 

public health, environmental monitoring, and 

diagnostic processes. 

5.3. AI-Enhanced Synthetic Biology 

AI models are already accelerating the design of 

novel enzymes, pathways, and regulatory elements. 

The next step is closed-loop synthetic biology, where AI 

designs, predicts, and adapts synthetic circuits in real 

time. Limitation: AI-designed genetic circuits fail in 

vivo 40% of time due to unmodeled host interactions 

[53].  

Emerging Trends 

 Generative Design using GANs, VAEs, and protein 

language models (e.g., ProGen, ProtGPT2). 

 Robotic Automation + AI in Design–Build–Test–

Learn (DBTL) cycles.  

Opportunity 

AI can make synthetic biology faster, cheaper, and 

more robust, especially for applications in 

biomanufacturing and biosensing. 

 

 

Figure 6. AI-Microbiology convergence framework for future innovation. 
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5.4. Digital Twins for Microbial Systems 

A digital twin is a dynamic, AI-powered simulation 

of a physical system, such as a microbial ecosystem or 

bioreactor. These models provide real-time 

monitoring, prediction, and optimization.  

Applications 

 Industrial Fermentation: Adaptive control of pH, 

oxygen, and nutrient flow. 

 Bioremediation: Simulation of pollutant degradation 

under different microbial consortia. 

 Microbiome Engineering: Testing probiotic or phage 

therapy strategies in silico. 

Challenge: Metabolic model integration requires 

real-time multi-omics data (currently feasible only in 

industrial settings). 

Opportunity 

Digital twins could revolutionize how we test 

hypotheses and deploy interventions in microbial 

systems. 

5.5. Planetary-Scale Microbial Intelligence 

With advances in remote sensing, IoT-powered 

environmental monitoring, and distributed 

computing, it is now possible to develop AI systems 

that track microbial dynamics across the biosphere. 

Current effort: Earth Microbiome Project’s AI network 

monitors 500+ sites for pathogen emergence. 

Emerging Trends 

 Global Microbiome Surveillance Networks that 

combine environmental sensors, drones, and 

satellites with cloud-based AI models. 

 Climate-Microbiome Models that predict feedback 

loops between microbial activity and ecosystem 

health. 

Opportunity 

AI could serve as a planetary-scale early warning 

system for environmental degradation, pathogen 

emergence, or ecosystem tipping points. 

As shown in Fig.6, the future of AI-driven microbiology 

depends on a convergence framework that combines 

multi-omics data, AI-powered discovery engines, and 

smart biotechnologies. This systems approach allows 

for: 

 Precision diagnostics (e.g., strain identification via 

explainable AI), 

 Sustainable solutions (e.g., carbon-negative produc-

tion from waste), 

 Responsible innovation (e.g., SHAP/LIME for model 

transparency and equitable knowledge sharing). 

Synergistic links between these areas, enabled by 

tools like federated learning and hybrid mechanistic-

AI models, will foster scalable, ethical advances in 

microbial science. Systems-level integration of multi-

omics data, AI-driven discovery pipelines, and 

sustainable biotechnologies within an ethical 

innovation framework. Arrows indicate synergistic 

pathways that allow for precision diagnostics, new 

bioproducts, and equitable solutions. 

6. Conclusion 

Artificial intelligence (AI) is rapidly reshaping 

microbiology, bridging fundamental research in 

microbial genomics and ecology with practical 

applications in diagnostics, biomanufacturing, and 

planetary health. This review uniquely integrates AI 

applications across diverse microbiological domains, 

emphasizing their potential to uncover novel insights 

and drive innovation. AI models enhance genome 

annotation, accelerate antimicrobial resistance 

prediction, enable real-time bioprocess optimization, 

and reveal intricate ecological dynamics. However, 

challenges such as limited interpretability, data biases, 

and ethical considerations must be addressed to ensure 

reliable and equitable deployment. Interdisciplinary 

collaboration among microbiologists, data scientists, 

clinicians, and engineers is essential to develop 

biologically meaningful, ethically sound, and 

technically robust AI systems. Looking forward, 

advancements in explainable AI, hybrid mechanistic-

data-driven models, causal inference, and global 

microbiome surveillance will empower researchers to 
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explore deeper questions, design smarter systems, and 

unlock the full potential of microbial science for 

societal and environmental benefit. 

Recommendations 

Researchers: Adopt XAI and causal inference. 

Funders: Support LMIC infrastructure. 

Policymakers: Develop AI-microbiology governance. 
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Using Artificial Intelligence Chatbots  

We recognize the use of artificial intelligence 

technologies, notably ChatGPT by OpenAI, for initial 

drafting support, refining technical language, and 

conceptualizing figures. Nevertheless, all scientific 

content, critical analysis, integration of domain 

expertise, and final decisions in writing the manuscript 

were exclusively made by the authors. 

Explainable AI: Building transparent, human-centered 

tools 

Synthetic Biology: Accelerating biological design with 

generative models 

Digital Twins: Simulating microbial ecosystems for 

control and prediction 

Planetary Intelligence: Global-scale microbiome 

surveillance and modeling. Together, these 

innovations position AI as a discovery engine and 

planetary sensor for 21st-century microbiology. 
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